Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1304-9. doi: 10.1073/pnas.1312369111. Epub 2014 Jan 13.
The physical basis for how macromolecules regulate the onset of mineral formation in calcifying tissues is not well established. A popular conceptual model assumes the organic matrix provides a stereochemical match during cooperative organization of solute ions. In contrast, another uses simple binding assays to identify good promoters of nucleation. Here, we reconcile these two views and provide a mechanistic explanation for template-directed nucleation by correlating heterogeneous nucleation barriers with crystal-substrate-binding free energies. We first measure the kinetics of calcite nucleation onto model substrates that present different functional group chemistries (carboxyl, thiol, phosphate, and hydroxyl) and conformations (C11 and C16 chain lengths). We find rates are substrate-specific and obey predictions of classical nucleation theory at supersaturations that extend above the solubility of amorphous calcium carbonate. Analysis of the kinetic data shows the thermodynamic barrier to nucleation is reduced by minimizing the interfacial free energy of the system, γ. We then use dynamic force spectroscopy to independently measure calcite-substrate-binding free energies, ΔGb. Moreover, we show that within the classical theory of nucleation, γ and ΔGb should be linearly related. The results bear out this prediction and demonstrate that low-energy barriers to nucleation correlate with strong crystal-substrate binding. This relationship is general to all functional group chemistries and conformations. These findings provide a physical model that reconciles the long-standing concept of templated nucleation through stereochemical matching with the conventional wisdom that good binders are good nucleators. The alternative perspectives become internally consistent when viewed through the lens of crystal-substrate binding.
大分子如何调节矿化组织中矿物质形成的起始的物理基础尚未得到很好的确立。一个流行的概念模型假设有机基质在溶质离子的协同组织过程中提供立体化学匹配。相比之下,另一种方法则使用简单的结合测定来鉴定成核的良好促进剂。在这里,我们调和了这两种观点,并通过将异质成核势垒与晶体-基底结合自由能相关联,为模板指导的成核提供了一种机制解释。我们首先测量了方解石在呈现不同官能团化学性质(羧基、巯基、磷酸基和羟基)和构象(C11 和 C16 链长)的模型基底上成核的动力学。我们发现速率是基底特异性的,并在超过无定形碳酸钙溶解度的过饱和度下服从经典成核理论的预测。对动力学数据的分析表明,通过最小化系统的界面自由能γ,成核的热力学势垒降低。然后,我们使用动态力谱法独立测量方解石-基底结合自由能ΔGb。此外,我们表明在经典成核理论中,γ和ΔGb应该是线性相关的。结果证实了这一预测,并表明低能成核势垒与强晶体-基底结合相关。这种关系对于所有官能团化学和构象都是通用的。这些发现提供了一个物理模型,将通过立体化学匹配的模板成核的长期概念与良好结合剂是良好成核剂的传统观点调和起来。通过晶体-基底结合的视角来看,这两种观点变得内在一致。