Suppr超能文献

多样本和先验知识的亚克隆变异 calling。

Subclonal variant calling with multiple samples and prior knowledge.

机构信息

Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK, Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK and Department of Haematology, University of Cambridge, Cambridge CB22XY, UK.

出版信息

Bioinformatics. 2014 May 1;30(9):1198-204. doi: 10.1093/bioinformatics/btt750. Epub 2014 Jan 16.

Abstract

MOTIVATION

Targeted resequencing of cancer genes in large cohorts of patients is important to understand the biological and clinical consequences of mutations. Cancers are often clonally heterogeneous, and the detection of subclonal mutations is important from a diagnostic point of view, but presents strong statistical challenges.

RESULTS

Here we present a novel statistical approach for calling mutations from large cohorts of deeply resequenced cancer genes. These data allow for precisely estimating local error profiles and enable detecting mutations with high sensitivity and specificity. Our probabilistic method incorporates knowledge about the distribution of variants in terms of a prior probability. We show that our algorithm has a high accuracy of calling cancer mutations and demonstrate that the detected clonal and subclonal variants have important prognostic consequences.

摘要

动机

对大量患者的癌症基因进行靶向重测序对于了解突变的生物学和临床后果非常重要。癌症通常是克隆异质性的,从诊断的角度来看,检测亚克隆突变很重要,但这带来了很强的统计学挑战。

结果

在这里,我们提出了一种从深度重测序的癌症基因的大样本中调用突变的新的统计方法。这些数据可以精确估计局部错误分布,并实现高灵敏度和特异性的突变检测。我们的概率方法将变体分布的知识纳入先验概率。我们表明,我们的算法具有很高的癌症突变调用准确性,并证明检测到的克隆和亚克隆变体具有重要的预后意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f57/3998123/43f8950ccad9/btt750f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验