Ullah A M M Sharif, D'Addona Doriana, Arai Nobuyuki
Department of Mechanical Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan.
Department of Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, I - 80125 Naples, Italy.
Biosystems. 2014 Mar;117:40-53. doi: 10.1016/j.biosystems.2014.01.003. Epub 2014 Jan 18.
This study deals with a computing method called DNA based computing (DBC) that takes inspiration from the Central Dogma of Molecular Biology. The proposed DBC uses a set of user-defined rules to create a DNA-like sequence from a given piece of problem-relevant information (e.g., image data) in a dry-media (i.e., in an ordinary computer). It then uses another set of user-defined rules to create an mRNA-like sequence from the DNA. Finally, it uses the genetic code to translate the mRNA (or directly the DNA) to a protein-like sequence (a sequence of amino acids). The informational characteristics of the protein (entropy, absence, presence, abundance of some selected amino acids, and relationships among their likelihoods) can be used to solve problems (e.g., to understand complex shapes from their image data). Two case studies ((1) fractal geometry generated shape of a fern-leaf and (2) machining experiment generated shape of the worn-zones of a cutting tool) are presented elucidating the shape understanding ability of the proposed DBC in the presence of a great deal of variability in the image data of the respective shapes. The implication of the proposed DBC from the context of Internet-aided manufacturing system is also described. Further study can be carried out in solving other complex computational problems by using the proposed DBC and its derivatives.
本研究涉及一种名为基于DNA计算(DBC)的计算方法,该方法从分子生物学的中心法则中获取灵感。所提出的DBC使用一组用户定义的规则,在干介质(即普通计算机)中从给定的与问题相关的信息(如图像数据)创建类似DNA的序列。然后,它使用另一组用户定义的规则从DNA创建类似mRNA的序列。最后,它使用遗传密码将mRNA(或直接将DNA)翻译成类似蛋白质的序列(氨基酸序列)。蛋白质的信息特征(熵、某些选定氨基酸的缺失、存在、丰度以及它们可能性之间的关系)可用于解决问题(例如,从图像数据理解复杂形状)。给出了两个案例研究((1)分形几何生成的蕨叶形状和(2)加工实验生成的刀具磨损区域形状),阐明了所提出的DBC在各自形状的图像数据存在大量变异性的情况下的形状理解能力。还描述了从互联网辅助制造系统的背景下所提出的DBC的意义。通过使用所提出的DBC及其衍生物,可以在解决其他复杂计算问题方面开展进一步的研究。