Suppr超能文献

一种振动调制固态莫特绝缘体的光学性质

Optical properties of a vibrationally modulated solid state Mott insulator.

作者信息

Kaiser S, Clark S R, Nicoletti D, Cotugno G, Tobey R I, Dean N, Lupi S, Okamoto H, Hasegawa T, Jaksch D, Cavalleri A

机构信息

1] Max-Planck-Institute for the Structure and Dynamics of Matter, Hamburg, Germany [2].

1] Centre for Quantum Technologies, National University of Singapore, Singapore [2] Department of Physics, Oxford University, Clarendon Laboratory, Parks Road, Oxford, UK [3].

出版信息

Sci Rep. 2014 Jan 22;4:3823. doi: 10.1038/srep03823.

Abstract

Optical pulses at THz and mid-infrared frequencies tuned to specific vibrational resonances modulate the lattice along chosen normal mode coordinates. In this way, solids can be switched between competing electronic phases and new states are created. Here, we use vibrational modulation to make electronic interactions (Hubbard-U) in Mott-insulator time dependent. Mid-infrared optical pulses excite localized molecular vibrations in ET-F2TCNQ, a prototypical one-dimensional Mott-insulator. A broadband ultrafast probe interrogates the resulting optical spectrum between THz and visible frequencies. A red-shifted charge-transfer resonance is observed, consistent with a time-averaged reduction of the electronic correlation strength U. Secondly, a sideband manifold inside of the Mott-gap appears, resulting from a periodically modulated U. The response is compared to computations based on a quantum-modulated dynamic Hubbard model. Heuristic fitting suggests asymmetric holon-doublon coupling to the molecules and that electron double-occupancies strongly squeeze the vibrational mode.

摘要

太赫兹和中红外频率的光脉冲被调谐到特定的振动共振,沿着选定的简正模式坐标调制晶格。通过这种方式,固体可以在相互竞争的电子相之间切换,并产生新的状态。在这里,我们使用振动调制使莫特绝缘体中的电子相互作用(哈伯德 - U)随时间变化。中红外光脉冲激发了典型的一维莫特绝缘体ET - F2TCNQ中的局域分子振动。一个宽带超快探测器探测太赫兹和可见光频率之间产生的光谱。观察到一个红移的电荷转移共振,这与电子关联强度U的时间平均降低一致。其次,在莫特能隙内出现了一个边带流形,这是由周期性调制的U引起的。将该响应与基于量子调制动态哈伯德模型的计算结果进行了比较。启发式拟合表明,空穴子 - 双空穴子与分子的耦合不对称,并且电子双占据强烈挤压振动模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abeb/3898202/a20288ef814c/srep03823-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验