Department of Biochemistry, University of California , Riverside, California 92521, United States.
Biochemistry. 2014 Feb 18;53(6):1001-17. doi: 10.1021/bi401450y. Epub 2014 Feb 5.
We previously provided experimental evidence that an extensive network of hydrogen bonds exists near the oxygen-evolving Mn4CaO5 cluster in photosystem II and that elements of this network form part of a dominant proton-egress pathway leading from the Mn4CaO5 cluster to the thylakoid lumen. The evidence was based on (i) the elimination of the same ν(C═O) mode of a protonated carboxylate group in the S2-minus-S1 FTIR difference spectrum of wild-type PSII core complexes from the cyanobacterium Synechocystis sp. PCC 6803 by the mutations D1-E65A, D2-E312A, and D1-E329Q and (ii) the substantial decrease in the efficiency of the S3 to S0 transition caused by the mutations D1-D61A, D1-E65A, and D2-E312A. The eliminated ν(C═O) mode corresponds to an unidentified carboxylate group whose pKa value decreases in response to the increased charge that develops on the Mn4CaO5 cluster during the S1 to S2 transition. In the current study, we have extended our work to include the ν(C═O) regions of other Sn+1-minus-Sn FTIR difference spectra and to additional mutations of residues inferred to participate in networks of hydrogen bonds near the Mn4CaO5 cluster or leading from the Mn4CaO5 cluster to the thylakoid lumen. Our data suggest that a different carboxylate group has its pKa value increased during the S2 to S3 transition and that a third carboxylate group experiences a change in its environment during the S0 to S1 transition. The pKa values that shift during the S1 to S2 and S2 to S3 transitions appear to be restored during the S3 to S0 transition. The D1-R334A mutation decreases or eliminates the same ν(C═O) modes from the S2-minus-S1 and S3-minus-S2 spectra as mutations D1-E65A, D2-E312A, and D1-E329Q and substantially decreases the efficiency of the S3 to S0 transition. We conclude that D1-R334 participates in the same dominant proton-egress pathway that was identified in our previous study. The D1-Q165E mutation leaves the ν(C═O) region of the S2-minus-S1 FTIR difference spectrum intact, but it eliminates a mode from this region of the S3-minus-S2 spectrum. We conclude that D1-Q165 participates in an extensive network of hydrogen bonds that that extends across the Mn4CaO5 cluster to the D1-E65/D2-E312 dyad and that includes D1-E329 and several water molecules including the W2 and W3 water ligands of the Mn4CaO5 cluster's dangling MnA4 and Ca ions, respectively. The D2-E307Q, D2-D308N, D2-E310Q, and D2-E323Q mutations alter the ν(C═O) regions of none of the FTIR difference spectra. We conclude that these four residues are located far from the three unidentified carboxylate groups that give rise to the ν(C═O) features observed in the FTIR difference spectra.
我们之前提供了实验证据,表明在光合作用 II 中的氧释放 Mn4CaO5 簇附近存在广泛的氢键网络,并且该网络的元素构成了从 Mn4CaO5 簇到类囊体腔的主要质子出芽途径的一部分。证据基于 (i) 突变 D1-E65A、D2-E312A 和 D1-E329Q 消除了来自聚球藻 PCC 6803 的野生型 PSII 核心复合物 S2-减 S1 FTIR 差谱中一个质子化羧酸盐基团的相同 ν(C═O)模式,以及 (ii) 突变 D1-D61A、D1-E65A 和 D2-E312A 导致 S3 到 S0 跃迁效率的大幅降低。消除的 ν(C═O)模式对应于一个未识别的羧酸盐基团,其 pKa 值随着 Mn4CaO5 簇在 S1 到 S2 跃迁过程中形成的电荷增加而降低。在当前的研究中,我们将我们的工作扩展到包括其他 Sn+1-减 Sn FTIR 差谱的 ν(C═O)区域,以及额外的突变残基,这些残基推测参与 Mn4CaO5 簇附近的氢键网络或从 Mn4CaO5 簇到类囊体腔的质子出芽途径。我们的数据表明,在 S2 到 S3 跃迁过程中,另一个羧酸盐基团的 pKa 值升高,在 S0 到 S1 跃迁过程中,第三个羧酸盐基团的环境发生变化。在 S1 到 S2 和 S2 到 S3 跃迁过程中发生变化的 pKa 值似乎在 S3 到 S0 跃迁过程中恢复。D1-R334A 突变从 S2-减 S1 和 S3-减 S2 光谱中消除了与突变 D1-E65A、D2-E312A 和 D1-E329Q 相同的 ν(C═O)模式,并大大降低了 S3 到 S0 跃迁的效率。我们得出结论,D1-R334 参与了我们之前研究中确定的相同的主导质子出芽途径。D1-Q165E 突变使 S2-减 S1 FTIR 差谱的 ν(C═O)区域保持完整,但消除了该区域 S3-减 S2 光谱中的一个模式。我们得出结论,D1-Q165 参与了一个广泛的氢键网络,该网络横跨 Mn4CaO5 簇延伸到 D1-E65/D2-E312 二联体,并包括 D1-E329 和几个水分子,包括 Mn4CaO5 簇悬空 MnA4 和 Ca 离子的 W2 和 W3 水配体。D2-E307Q、D2-D308N、D2-E310Q 和 D2-E323Q 突变不会改变任何 FTIR 差谱的 ν(C═O)区域。我们得出结论,这四个残基位于远离三个未识别的羧酸盐基团的位置,这些羧酸盐基团产生了 FTIR 差谱中观察到的 ν(C═O)特征。