Department of Neurology, Epilepsy Center Erlangen, University Hospital Erlangen, Germany.
Department of Neurology, Epilepsy Center Erlangen, University Hospital Erlangen, Germany.
Clin Neurophysiol. 2014 Jul;125(7):1346-52. doi: 10.1016/j.clinph.2013.12.104. Epub 2014 Jan 7.
In a previous study we proposed a robust method for automatic seizure detection in scalp EEG recordings. The goal of the current study was to validate an improved algorithm in a much larger group of patients in order to show its general applicability in clinical routine.
For the detection of seizures we developed an algorithm based on Short Time Fourier Transform, calculating the integrated power in the frequency band 2.5-12 Hz for a multi-channel seizure detection montage referenced against the average of Fz-Cz-Pz. For identification of seizures an adaptive thresholding technique was applied. Complete data sets of each patient were used for analyses for a fixed set of parameters.
159 patients (117 temporal-lobe epilepsies (TLE), 35 extra-temporal lobe epilepsies (ETLE), 7 other) were included with a total of 25,278 h of EEG data, 794 seizures were analyzed. The sensitivity was 87.3% and number of false detections per hour (FpH) was 0.22/h. The sensitivity for TLE patients was 89.9% and FpH=0.19/h; for ETLE patients sensitivity was 77.4% and FpH=0.25/h.
The seizure detection algorithm provided high values for sensitivity and selectivity for unselected large EEG data sets without a priori assumptions of seizure patterns.
The algorithm is a valuable tool for fast and effective screening of long-term scalp EEG recordings.
在先前的研究中,我们提出了一种用于头皮 EEG 记录中自动癫痫发作检测的稳健方法。本研究的目的是在更大的患者群体中验证改进后的算法,以证明其在临床常规中的普遍适用性。
我们开发了一种基于短时傅里叶变换的算法,用于检测癫痫发作,计算多通道癫痫发作检测导联相对于 Fz-Cz-Pz 平均值的 2.5-12 Hz 频段的积分功率。为了识别癫痫发作,应用了自适应阈值技术。为了分析,为一组固定参数使用每个患者的完整数据集。
共纳入 159 例患者(117 例颞叶癫痫(TLE)、35 例颞叶外癫痫(ETLE)、7 例其他),共 25278 小时的 EEG 数据,分析了 794 例癫痫发作。敏感性为 87.3%,每小时误报数(FpH)为 0.22/h。TLE 患者的敏感性为 89.9%,FpH=0.19/h;ETLE 患者的敏感性为 77.4%,FpH=0.25/h。
该癫痫发作检测算法在不预先假设癫痫发作模式的情况下,对未选择的大型 EEG 数据集提供了高灵敏度和选择性。
该算法是对长程头皮 EEG 记录进行快速有效筛选的有价值工具。