Suppr超能文献

骨形成与吸收活动的耦合:基本多细胞单位内的多种信号

Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit.

作者信息

Sims Natalie A, Martin T John

机构信息

Department of Medicine, St Vincent's Institute of Medical Research, University of Melbourne , Melbourne, VIC, Australia.

出版信息

Bonekey Rep. 2014 Jan 8;3:481. doi: 10.1038/bonekey.2013.215.

Abstract

Coupling between bone formation and bone resorption refers to the process within basic multicellular units in which resorption by osteoclasts is met by the generation of osteoblasts from precursors, and their bone-forming activity, which needs to be sufficient to replace the bone lost. There are many sources of activities that contribute to coupling at remodeling sites, including growth factors released from the matrix, soluble and membrane products of osteoclasts and their precursors, signals from osteocytes and from immune cells and signaling taking place within the osteoblast lineage. Coupling is therefore a process that involves the interaction of a wide range of cell types and control mechanisms. As bone remodeling occurs at many sites asynchronously throughout the skeleton, locally generated activities comprise very important control mechanisms. In this review, we explore the potential roles of a number of these factors, including sphingosine-1-phosphate, semaphorins, ephrins, interleukin-6 (IL-6) family cytokines and marrow-derived factors. Their interactions achieve the essential tight control of coupling within individual remodeling units that is required for control of skeletal mass.

摘要

骨形成与骨吸收之间的偶联是指基本多细胞单位内的一个过程,在这个过程中破骨细胞的吸收作用会引发前体细胞生成成骨细胞及其骨形成活性,且这种骨形成活性必须足以替代流失的骨组织。在重塑部位,有许多活动来源有助于偶联,包括从基质释放的生长因子、破骨细胞及其前体细胞的可溶性和膜性产物、骨细胞和免疫细胞发出的信号以及成骨细胞谱系内发生的信号传导。因此,偶联是一个涉及多种细胞类型和控制机制相互作用的过程。由于骨重塑在整个骨骼的许多部位异步发生,局部产生的活动构成了非常重要的控制机制。在这篇综述中,我们探讨了其中一些因子的潜在作用,包括1-磷酸鞘氨醇、信号素、 Ephrin 、白细胞介素-6(IL-6)家族细胞因子和骨髓衍生因子。它们的相互作用实现了对单个重塑单位内偶联的必要严格控制,而这对于骨骼质量的控制是必需的。

相似文献

2
The critical interplay between bone resorbing and bone forming cells.
J Clin Periodontol. 2019 Jun;46 Suppl 21:33-51. doi: 10.1111/jcpe.13051.
3
Molecular mechanisms in coupling of bone formation to resorption.
Crit Rev Eukaryot Gene Expr. 2009;19(1):73-88. doi: 10.1615/critreveukargeneexpr.v19.i1.40.
4
Osteoblast and osteoclast crosstalks: from OAF to Ephrin.
Inflamm Allergy Drug Targets. 2012 Jun;11(3):196-200. doi: 10.2174/187152812800392670.
5
Osteoclast-derived coupling factors in bone remodeling.
Calcif Tissue Int. 2014 Jan;94(1):88-97. doi: 10.1007/s00223-013-9741-7. Epub 2013 May 23.
6
Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption.
Int J Biochem Cell Biol. 2016 Oct;79:14-23. doi: 10.1016/j.biocel.2016.08.003. Epub 2016 Aug 3.
7
Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms.
Annu Rev Physiol. 2020 Feb 10;82:507-529. doi: 10.1146/annurev-physiol-021119-034425. Epub 2019 Sep 25.
8
Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption.
Semin Cell Dev Biol. 2008 Oct;19(5):444-51. doi: 10.1016/j.semcdb.2008.07.016. Epub 2008 Jul 31.
9
Osteoclast-derived activity in the coupling of bone formation to resorption.
Trends Mol Med. 2005 Feb;11(2):76-81. doi: 10.1016/j.molmed.2004.12.004.
10
Osteoclast-derived coupling factors: origins and state-of-play Louis V Avioli lecture, ASBMR 2023.
J Bone Miner Res. 2024 Sep 26;39(10):1377-1385. doi: 10.1093/jbmr/zjae110.

引用本文的文献

1
Cadmium-Induced Bone Toxicity: Deciphering the Osteoclast-Osteoblast Crosstalk.
Biology (Basel). 2025 Aug 14;14(8):1051. doi: 10.3390/biology14081051.
2
Ovalbumin-induced asthma leads to bone loss with Piezo channel suppression in mice.
Commun Biol. 2025 Aug 29;8(1):1309. doi: 10.1038/s42003-025-08753-x.
3
Association between radiographic equine distal phalanx characteristics and absence, presence and type of horseshoes.
Front Vet Sci. 2025 Jul 25;12:1598038. doi: 10.3389/fvets.2025.1598038. eCollection 2025.
4
Associations between an inflammatory diet index and nonunion: a prospective study of 172,839 UK biobank participants.
Front Nutr. 2025 Jul 14;12:1640259. doi: 10.3389/fnut.2025.1640259. eCollection 2025.
5
TNFα stimulates osteoclastogenesis and expression of CX3CL1 in non-adherent bone marrow cells.
Biochem Biophys Rep. 2025 Jul 11;43:102155. doi: 10.1016/j.bbrep.2025.102155. eCollection 2025 Sep.
7
MAGI1 attenuates osteoarthritis by regulating osteoclast fusion in subchondral bone through the RhoA-ROCK1 signaling pathway.
J Orthop Translat. 2025 Apr 23;52:167-181. doi: 10.1016/j.jot.2025.04.007. eCollection 2025 May.
8
Histopathological, immunohistochemical and imaging features of bone metastases of mammary carcinoma in bitches: cases report.
Braz J Vet Med. 2025 Mar 19;47:e009124. doi: 10.29374/2527-2179.bjvm009124. eCollection 2025.
9
Cancer metastasis to the bone: Mechanisms and animal models (Review).
Oncol Lett. 2025 Mar 6;29(5):221. doi: 10.3892/ol.2025.14967. eCollection 2025 May.
10
Biomaterial Cues for Regulation of Osteoclast Differentiation and Function in Bone Regeneration.
Adv Ther (Weinh). 2025 Jan;8(1). doi: 10.1002/adtp.202400296. Epub 2024 Nov 15.

本文引用的文献

1
Vitamin D endocrine system and osteoclasts.
Bonekey Rep. 2014 Feb 5;3:495. doi: 10.1038/bonekey.2013.229. eCollection 2014.
2
Physiological functions of osteoblast lineage and T cell-derived RANKL in bone homeostasis.
J Bone Miner Res. 2014 Apr;29(4):830-42. doi: 10.1002/jbmr.2096.
3
Cells of the immune system orchestrate changes in bone cell function.
Calcif Tissue Int. 2014 Jan;94(1):98-111. doi: 10.1007/s00223-013-9764-0. Epub 2013 Aug 3.
4
Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation.
J Clin Invest. 2013 Sep;123(9):3914-24. doi: 10.1172/JCI69493. Epub 2013 Aug 1.
5
Interactions between B lymphocytes and the osteoblast lineage in bone marrow.
Calcif Tissue Int. 2013 Sep;93(3):261-8. doi: 10.1007/s00223-013-9753-3. Epub 2013 Jul 10.
6
Cancer Stem Cells and the Bone Marrow Microenvironment.
Bonekey Rep. 2012 Mar 1;2012(1). doi: 10.1038/bonekey.2012.48.
7
WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta.
N Engl J Med. 2013 May 9;368(19):1809-16. doi: 10.1056/NEJMoa1215458.
8
Sema3A regulates bone-mass accrual through sensory innervations.
Nature. 2013 May 23;497(7450):490-3. doi: 10.1038/nature12115. Epub 2013 May 5.
9
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验