Suppr超能文献

哺乳动物和细菌中的氧感应策略。

Oxygen sensing strategies in mammals and bacteria.

机构信息

Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States.

Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States.

出版信息

J Inorg Biochem. 2014 Apr;133:63-72. doi: 10.1016/j.jinorgbio.2013.12.010. Epub 2014 Jan 3.

Abstract

The ability to sense and adapt to changes in pO2 is crucial for basic metabolism in most organisms, leading to elaborate pathways for sensing hypoxia (low pO2). This review focuses on the mechanisms utilized by mammals and bacteria to sense hypoxia. While responses to acute hypoxia in mammalian tissues lead to altered vascular tension, the molecular mechanism of signal transduction is not well understood. In contrast, chronic hypoxia evokes cellular responses that lead to transcriptional changes mediated by the hypoxia inducible factor (HIF), which is directly controlled by post-translational hydroxylation of HIF by the non-heme Fe(II)/αKG-dependent enzymes FIH and PHD2. Research on PHD2 and FIH is focused on developing inhibitors and understanding the links between HIF binding and the O2 reaction in these enzymes. Sulfur speciation is a putative mechanism for acute O2-sensing, with special focus on the role of H2S. This sulfur-centered model is discussed, as are some of the directions for further refinement of this model. In contrast to mammals, bacterial O2-sensing relies on protein cofactors that either bind O2 or oxidatively decompose. The sensing modality for bacterial O2-sensors is either via altered DNA binding affinity of the sensory protein, or else due to the actions of a two-component signaling cascade. Emerging data suggests that proteins containing a hemerythrin-domain, such as FBXL5, may serve to connect iron sensing to O2-sensing in both bacteria and humans. As specific molecular machinery becomes identified, these hypoxia sensing pathways present therapeutic targets for diseases including ischemia, cancer, or bacterial infection.

摘要

感知和适应 pO2 的变化对于大多数生物体的基本代谢至关重要,这导致了用于感知缺氧(低 pO2)的精细途径。本综述重点介绍了哺乳动物和细菌用于感知缺氧的机制。虽然哺乳动物组织中对急性缺氧的反应导致血管张力改变,但信号转导的分子机制尚不清楚。相比之下,慢性缺氧会引起细胞反应,从而导致转录变化,这些变化由缺氧诱导因子(HIF)介导,HIF 可通过非血红素 Fe(II)/αKG 依赖性酶 FIH 和 PHD2 对 HIF 的翻译后羟化直接控制。对 PHD2 和 FIH 的研究集中在开发抑制剂和理解 HIF 结合与这些酶中 O2 反应之间的联系上。硫形态是一种用于急性 O2 感应的假定机制,特别关注 H2S 的作用。讨论了基于硫的模型,以及进一步完善该模型的一些方向。与哺乳动物不同,细菌的 O2 感应依赖于结合 O2 或氧化分解的蛋白质辅因子。细菌 O2 传感器的感应方式要么是通过改变传感器蛋白的 DNA 结合亲和力,要么是由于双组分信号级联的作用。新出现的数据表明,含有血红素结合域的蛋白质,如 FBXL5,可能在细菌和人类中连接铁感应和 O2 感应。随着特定的分子机制被确定,这些缺氧感应途径为包括缺血、癌症或细菌感染在内的疾病提供了治疗靶点。

相似文献

1
Oxygen sensing strategies in mammals and bacteria.
J Inorg Biochem. 2014 Apr;133:63-72. doi: 10.1016/j.jinorgbio.2013.12.010. Epub 2014 Jan 3.
2
Kinetic Investigations of the Role of Factor Inhibiting Hypoxia-inducible Factor (FIH) as an Oxygen Sensor.
J Biol Chem. 2015 Aug 7;290(32):19726-42. doi: 10.1074/jbc.M115.653014. Epub 2015 Jun 25.
3
Hypoxia-inducible factor 1 (HIF-1) pathway.
Sci STKE. 2007 Oct 9;2007(407):cm8. doi: 10.1126/stke.4072007cm8.
4
Nuclear-cytoplasmatic shuttling of proteins in control of cellular oxygen sensing.
J Mol Med (Berl). 2015 Jun;93(6):599-608. doi: 10.1007/s00109-015-1276-0. Epub 2015 Mar 27.
5
Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression.
Clin Exp Pharmacol Physiol. 2006 Oct;33(10):968-79. doi: 10.1111/j.1440-1681.2006.04474.x.
8
Screening chelating inhibitors of HIF-prolyl hydroxylase domain 2 (PHD2) and factor inhibiting HIF (FIH).
J Inorg Biochem. 2012 Aug;113:25-30. doi: 10.1016/j.jinorgbio.2012.03.002. Epub 2012 Mar 17.
9
Coordination changes and auto-hydroxylation of FIH-1: uncoupled O2-activation in a human hypoxia sensor.
J Inorg Biochem. 2008 Dec;102(12):2120-9. doi: 10.1016/j.jinorgbio.2008.07.018. Epub 2008 Aug 8.
10
Comparative analysis of N-terminal cysteine dioxygenation and prolyl-hydroxylation as oxygen-sensing pathways in mammalian cells.
J Biol Chem. 2023 Sep;299(9):105156. doi: 10.1016/j.jbc.2023.105156. Epub 2023 Aug 10.

引用本文的文献

2
Harnessing hypoxia: bacterial adaptation and chronic infection in cystic fibrosis.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf018.
3
Hyperbaric oxygen-induced acute lung injury: A mouse model study on pathogenic characteristics and recovery dynamics.
Front Physiol. 2024 Oct 18;15:1474933. doi: 10.3389/fphys.2024.1474933. eCollection 2024.
4
Polar localization of CheO under hypoxia promotes Campylobacter jejuni chemotactic behavior within host.
PLoS Pathog. 2022 Nov 3;18(11):e1010953. doi: 10.1371/journal.ppat.1010953. eCollection 2022 Nov.
6
Charge Maintenance during Catalysis in Nonheme Iron Oxygenases.
ACS Catal. 2022 May 20;12(10):6191-6208. doi: 10.1021/acscatal.1c04770. Epub 2022 May 10.
8
Large-scale sequencing of flatfish genomes provides insights into the polyphyletic origin of their specialized body plan.
Nat Genet. 2021 May;53(5):742-751. doi: 10.1038/s41588-021-00836-9. Epub 2021 Apr 19.
9
Carbon-fluorine bond cleavage mediated by metalloenzymes.
Chem Soc Rev. 2020 Jul 21;49(14):4906-4925. doi: 10.1039/c9cs00740g. Epub 2020 Jun 8.
10
The Redox Theory of Development.
Antioxid Redox Signal. 2020 Apr 1;32(10):715-740. doi: 10.1089/ars.2019.7976.

本文引用的文献

1
Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease.
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12679-84. doi: 10.1073/pnas.1308487110. Epub 2013 Jul 15.
2
Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing.
Am J Physiol Regul Integr Comp Physiol. 2013 Sep 15;305(6):R592-603. doi: 10.1152/ajpregu.00421.2012. Epub 2013 Jun 26.
3
Redox Biology of Hydrogen Sulfide: Implications for Physiology, Pathophysiology, and Pharmacology.
Redox Biol. 2013 Jan 1;1(1):32-39. doi: 10.1016/j.redox.2012.11.006.
4
Substrate preference of the HIF-prolyl hydroxylase-2 (PHD2) and substrate-induced conformational change.
J Inorg Biochem. 2013 Sep;126:55-60. doi: 10.1016/j.jinorgbio.2013.05.006. Epub 2013 May 21.
5
Spectroscopic studies of the mononuclear non-heme Fe(II) enzyme FIH: second-sphere contributions to reactivity.
J Am Chem Soc. 2013 Jul 3;135(26):9665-74. doi: 10.1021/ja312571m. Epub 2013 Jun 20.
7
A theoretical examination of hydrogen sulfide metabolism and its potential in autocrine/paracrine oxygen sensing.
Respir Physiol Neurobiol. 2013 Apr 1;186(2):173-9. doi: 10.1016/j.resp.2013.01.010. Epub 2013 Feb 1.
8
Inverse solvent isotope effects arising from substrate triggering in the factor inhibiting hypoxia inducible factor.
Biochemistry. 2013 Mar 5;52(9):1594-602. doi: 10.1021/bi3015482. Epub 2013 Feb 18.
10
Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling.
J Mol Biol. 2013 Mar 11;425(5):886-901. doi: 10.1016/j.jmb.2012.12.011. Epub 2012 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验