Suppr超能文献

利用极短超声脉冲在固有空化阈值之外进行的 Histotripsy:微声空化爆破。

Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):251-65. doi: 10.1109/TUFFC.2014.6722611.

Abstract

Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. Conventional histotripsy treatments have used longer pulses from 3 to 10 cycles, wherein the lesion-producing bubble cloud generation depends on the pressure-release scattering of very high peak positive shock fronts from previously initiated, sparsely distributed bubbles (the shock-scattering mechanism). In our recent work, the peak negative pressure (P-) for generation of dense bubble clouds directly by a single negative half cycle, the intrinsic threshold, was measured. In this paper, the dense bubble clouds and resulting lesions (in red blood cell phantoms and canine tissues) generated by these supra-intrinsic threshold pulses were studied. A 32-element, PZT-8, 500-kHz therapy transducer was used to generate very short (<2 cycles) histotripsy pulses at a pulse repetition frequency (PRF) of 1 Hz and P- from 24.5 to 80.7 MPa. The results showed that the spatial extent of the histotripsy-induced lesions increased as the applied P- increased, and the sizes of these lesions corresponded well to the estimates of the focal regions above the intrinsic cavitation threshold, at least in the lower pressure regime (P- = 26 to 35 MPa). The average sizes for the smallest reproducible lesions were approximately 0.9 × 1.7 mm (lateral × axial), significantly smaller than the -6-dB beamwidth of the transducer (1.8 × 4.0 mm). These results suggest that, using the intrinsic threshold mechanism, well-confined and microscopic lesions can be precisely generated and their spatial extent can be estimated based on the fraction of the focal region exceeding the intrinsic cavitation threshold. Because the supra-threshold portion of the negative half cycle can be precisely controlled, lesions considerably less than a wavelength are easily produced, hence the term microtripsy.

摘要

超声空化爆破通过短而高压的超声脉冲产生密集的高能气泡云,从而实现组织的分割。传统的超声空化爆破治疗使用 3 到 10 个周期的长脉冲,在此期间,产生病变的气泡云的生成取决于先前启动的稀疏分布气泡的高压正冲击波的压力释放散射(冲击波散射机制)。在我们最近的工作中,测量了通过单个负半周期直接产生密集气泡云的峰值负压(P-),即固有阈值。在本文中,研究了这些超阈值脉冲产生的密集气泡云和由此产生的病变(在红细胞模拟物和犬组织中)。使用 32 个元件的 PZT-8、500kHz 治疗换能器以 1Hz 的脉冲重复频率(PRF)和 24.5 至 80.7MPa 的 P-产生非常短的(<2 个周期)超声空化爆破脉冲。结果表明,随着施加的 P-的增加,超声空化爆破诱导的病变的空间范围增大,并且这些病变的尺寸与固有空化阈值以上的焦点区域的估计值非常吻合,至少在较低的压力范围内(P-=26 至 35MPa)。最小可重复病变的平均尺寸约为 0.9×1.7mm(横向×轴向),明显小于换能器的-6dB 束宽(1.8×4.0mm)。这些结果表明,使用固有阈值机制,可以精确地产生良好限定的微观病变,并且可以根据超过固有空化阈值的焦点区域的分数来估计其空间范围。由于可以精确地控制负半周期的超阈值部分,因此很容易产生小于一个波长的病变,因此术语为微爆破。

相似文献

1
Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):251-65. doi: 10.1109/TUFFC.2014.6722611.
2
Dual-beam histotripsy: a low-frequency pump enabling a high-frequency probe for precise lesion formation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):325-40. doi: 10.1109/TUFFC.2014.6722617.
3
Histotripsy Lesion Formation Using an Ultrasound Imaging Probe Enabled by a Low-Frequency Pump Transducer.
Ultrasound Med Biol. 2015 Aug;41(8):2148-60. doi: 10.1016/j.ultrasmedbio.2015.03.026. Epub 2015 Apr 27.
5
Bubble cloud characteristics and ablation efficiency in dual-frequency intrinsic threshold histotripsy.
Phys Med Biol. 2023 Nov 6;68(22):225006. doi: 10.1088/1361-6560/ad00a5.
6
Acoustic Methods for Increasing the Cavitation Initiation Pressure Threshold.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Nov;65(11):2012-2019. doi: 10.1109/TUFFC.2018.2867793. Epub 2018 Aug 29.
7
Effects of f-number on the histotripsy intrinsic threshold and cavitation bubble cloud behavior.
Phys Med Biol. 2017 Feb 21;62(4):1269-1290. doi: 10.1088/1361-6560/aa54c7. Epub 2016 Dec 20.
8
Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):341-52. doi: 10.1109/TUFFC.2014.6722618.
9
High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy--histotripsy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Oct;54(10):2091-101. doi: 10.1109/tuffc.2007.504.
10
Effects of Droplet Composition on Nanodroplet-Mediated Histotripsy.
Ultrasound Med Biol. 2016 Apr;42(4):931-46. doi: 10.1016/j.ultrasmedbio.2015.11.027. Epub 2016 Jan 14.

引用本文的文献

1
Development of Histotripsy as a Local-Regional Liver Cancer Therapy: Preclinical to Clinical Translation.
Radiol Imaging Cancer. 2025 Jul;7(4):e240403. doi: 10.1148/rycan.240403.
4
Histotripsy-Induced Bactericidal Activity Correlates to Size of Cavitation Cloud In Vitro.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Dec;71(12: Breaking the Resolution Barrier in Ultrasound):1868-1878. doi: 10.1109/TUFFC.2024.3476438. Epub 2025 Jan 8.
5
In Vivo Cavitation-Based Aberration Correction of Histotripsy in Porcine Liver.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Aug;71(8):1019-1029. doi: 10.1109/TUFFC.2024.3409638. Epub 2024 Aug 19.
8
Histotripsy: A Method for Mechanical Tissue Ablation with Ultrasound.
Annu Rev Biomed Eng. 2024 Jul;26(1):141-167. doi: 10.1146/annurev-bioeng-073123-022334. Epub 2024 Jun 20.
9
Insights from preclinical cancer studies with histotripsy.
Int J Hyperthermia. 2024;41(1):2297650. doi: 10.1080/02656736.2023.2297650. Epub 2024 Jan 12.
10
Aberration correction in abdominal histotripsy.
Int J Hyperthermia. 2023;40(1):2266594. doi: 10.1080/02656736.2023.2266594. Epub 2023 Oct 9.

本文引用的文献

1
Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials.
Ultrasound Med Biol. 2013 Mar;39(3):449-65. doi: 10.1016/j.ultrasmedbio.2012.09.004. Epub 2013 Feb 4.
2
An efficient treatment strategy for histotripsy by removing cavitation memory.
Ultrasound Med Biol. 2012 May;38(5):753-66. doi: 10.1016/j.ultrasmedbio.2012.01.013. Epub 2012 Mar 6.
3
Cavitation clouds created by shock scattering from bubbles during histotripsy.
J Acoust Soc Am. 2011 Oct;130(4):1888-98. doi: 10.1121/1.3625239.
4
In vitro comminution of model renal calculi using histotripsy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 May;58(5):971-80. doi: 10.1109/TUFFC.2011.1898.
5
Histotripsy erosion of model urinary calculi.
J Endourol. 2011 Feb;25(2):341-4. doi: 10.1089/end.2010.0407. Epub 2010 Nov 22.
6
A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.
Ultrasound Med Biol. 2010 Dec;36(12):2132-43. doi: 10.1016/j.ultrasmedbio.2010.08.023. Epub 2010 Oct 28.
7
Therapeutic ultrasound to noninvasively create intracardiac communications in an intact animal model.
Catheter Cardiovasc Interv. 2011 Mar 1;77(4):580-8. doi: 10.1002/ccd.22787. Epub 2010 Oct 12.
8
Noninvasive creation of an atrial septal defect by histotripsy in a canine model.
Circulation. 2010 Feb 16;121(6):742-9. doi: 10.1161/CIRCULATIONAHA.109.889071. Epub 2010 Feb 1.
9
Noninvasive thrombolysis using pulsed ultrasound cavitation therapy - histotripsy.
Ultrasound Med Biol. 2009 Dec;35(12):1982-94. doi: 10.1016/j.ultrasmedbio.2009.07.001. Epub 2009 Oct 24.
10
Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 May;56(5):995-1005. doi: 10.1109/tuffc.2009.1131.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验