Suppr超能文献

对美洲原住民人群样本进行低覆盖度全基因组测序中的变异调用。

Variant calling in low-coverage whole genome sequencing of a Native American population sample.

机构信息

Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA.

出版信息

BMC Genomics. 2014 Jan 30;15:85. doi: 10.1186/1471-2164-15-85.

Abstract

BACKGROUND

The reduction in the cost of sequencing a human genome has led to the use of genotype sampling strategies in order to impute and infer the presence of sequence variants that can then be tested for associations with traits of interest. Low-coverage Whole Genome Sequencing (WGS) is a sampling strategy that overcomes some of the deficiencies seen in fixed content SNP array studies. Linkage-disequilibrium (LD) aware variant callers, such as the program Thunder, may provide a calling rate and accuracy that makes a low-coverage sequencing strategy viable.

RESULTS

We examined the performance of an LD-aware variant calling strategy in a population of 708 low-coverage whole genome sequences from a community sample of Native Americans. We assessed variant calling through a comparison of the sequencing results to genotypes measured in 641 of the same subjects using a fixed content first generation exome array. The comparison was made using the variant calling routines GATK Unified Genotyper program and the LD-aware variant caller Thunder. Thunder was found to improve concordance in a coverage dependent fashion, while correctly calling nearly all of the common variants as well as a high percentage of the rare variants present in the sample.

CONCLUSIONS

Low-coverage WGS is a strategy that appears to collect genetic information intermediate in scope between fixed content genotyping arrays and deep-coverage WGS. Our data suggests that low-coverage WGS is a viable strategy with a greater chance of discovering novel variants and associations than fixed content arrays for large sample association analyses.

摘要

背景

人类基因组测序成本的降低导致了基因型采样策略的使用,以便对可以进行关联分析的序列变异进行推断和推断。低覆盖率全基因组测序(WGS)是一种采样策略,克服了固定内容 SNP 阵列研究中存在的一些缺陷。连锁不平衡(LD)感知变异调用程序,如 Thunder 程序,可能提供一种调用率和准确性,使低覆盖率测序策略成为可行。

结果

我们在一个由美洲原住民社区样本中的 708 个低覆盖率全基因组序列的群体中检查了 LD 感知变异调用策略的性能。我们通过将测序结果与 641 个相同个体的使用固定内容第一代外显子阵列测量的基因型进行比较来评估变异调用。使用 GATK 统一基因型程序和 LD 感知变异调用器 Thunder 进行了比较。结果表明,Thunder 以依赖覆盖的方式提高了一致性,同时正确地调用了样本中几乎所有常见变异以及高比例的罕见变异。

结论

低覆盖率 WGS 是一种策略,它似乎介于固定内容基因分型阵列和深度覆盖 WGS 之间收集遗传信息。我们的数据表明,对于大型样本关联分析,低覆盖率 WGS 是一种可行的策略,比固定内容阵列更有可能发现新的变异和关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/148e/3914019/c84aea4121a9/1471-2164-15-85-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验