Suppr超能文献

一般多分量矢岛-及川系统:Painlevé分析、孤子解与能量共享碰撞

General multicomponent Yajima-Oikawa system: Painlevé analysis, soliton solutions, and energy-sharing collisions.

作者信息

Kanna T, Sakkaravarthi K, Tamilselvan K

机构信息

Post Graduate and Research Department of Physics, Bishop Heber College, Tiruchirappalli-620 017, Tamil Nadu, India.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062921. doi: 10.1103/PhysRevE.88.062921. Epub 2013 Dec 23.

Abstract

We consider the multicomponent Yajima-Oikawa (YO) system and show that the two-component YO system can be derived in a physical setting of a three-coupled nonlinear Schrödinger (3-CNLS) type system by the asymptotic reduction method. The derivation is further generalized to the multicomponent case. This set of equations describes the dynamics of nonlinear resonant interaction between a one-dimensional long wave and multiple short waves. The Painlevé analysis of the general multicomponent YO system shows that the underlying set of evolution equations is integrable for arbitrary nonlinearity coefficients which will result in three different sets of equations corresponding to positive, negative, and mixed nonlinearity coefficients. We obtain the general bright N-soliton solution of the multicomponent YO system in the Gram determinant form by using Hirota's bilinearization method and explicitly analyze the one- and two-soliton solutions of the multicomponent YO system for the above mentioned three choices of nonlinearity coefficients. We also point out that the 3-CNLS system admits special asymptotic solitons of bright, dark, anti-dark, and gray types, when the long-wave-short-wave resonance takes place. The short-wave component solitons undergo two types of energy-sharing collisions. Specifically, in the two-component YO system, we demonstrate that two types of energy-sharing collisions-(i) energy switching with opposite nature for a particular soliton in two components and (ii) similar kind of energy switching for a given soliton in both components-result for two different choices of nonlinearity coefficients. The solitons appearing in the long-wave component always exhibit elastic collision whereas those of short-wave components exhibit standard elastic collisions only for a specific choice of parameters. We have also investigated the collision dynamics of asymptotic solitons in the original 3-CNLS system. For completeness, we explore the three-soliton interaction and demonstrate the pairwise nature of collisions and unravel the fascinating state restoration property.

摘要

我们考虑多分量矢岛-及川(YO)系统,并表明通过渐近约化方法,可在三耦合非线性薛定谔(3-CNLS)型系统的物理设定中导出两分量YO系统。该推导进一步推广到多分量情形。这组方程描述了一维长波与多个短波之间非线性共振相互作用的动力学。对一般多分量YO系统的Painlevé分析表明,对于任意非线性系数,基础的演化方程组是可积的,这将导致对应正、负和混合非线性系数的三组不同方程。我们利用广田双线性化方法以Gram行列式形式得到多分量YO系统的一般亮N孤子解,并针对上述三种非线性系数选择明确分析多分量YO系统的单孤子和双孤子解。我们还指出,当长波-短波共振发生时,3-CNLS系统允许亮、暗、反暗和灰型的特殊渐近孤子。短波分量孤子经历两种类型的能量共享碰撞。具体而言,在两分量YO系统中,我们证明对于两种不同的非线性系数选择,会产生两种类型的能量共享碰撞——(i)两个分量中特定孤子的具有相反性质的能量切换,以及(ii)两个分量中给定孤子的类似能量切换。长波分量中出现的孤子总是表现出弹性碰撞,而短波分量的孤子仅在特定参数选择下表现出标准弹性碰撞。我们还研究了原始3-CNLS系统中渐近孤子的碰撞动力学。为了完整起见,我们探索了三孤子相互作用,展示了碰撞的两两性质,并揭示了引人入胜的状态恢复特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验