Suppr超能文献

分还是不分:Rim15在热量限制酵母培养物中的关键作用。

To divide or not to divide: a key role of Rim15 in calorie-restricted yeast cultures.

作者信息

Bisschops Markus M M, Zwartjens Priscilla, Keuter Sebastiaan G F, Pronk Jack T, Daran-Lapujade Pascale

机构信息

Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands.

Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands.

出版信息

Biochim Biophys Acta. 2014 May;1843(5):1020-30. doi: 10.1016/j.bbamcr.2014.01.026. Epub 2014 Jan 31.

Abstract

The PAS kinase Rim15 is proposed to integrate signals from different nutrient-sensing pathways and to control transcriptional reprogramming of Saccharomyces cerevisiae upon nutrient depletion. Despite this proposed role, previous transcriptome analyses of rim15 mutants solely focused on growing cultures. In the present work, retentostat cultivation enabled analysis of the role of Rim15 under severely calorie-restricted, virtually non-growing conditions. Under these conditions, deletion of RIM15 affected transcription of over 10-fold more genes than in growing cultures. Transcriptional responses, metabolic rates and cellular morphology indicated a key role of Rim15 in controlled cell-cycle arrest upon nutrient depletion. Moreover, deletion of rim15 reduced heat-shock tolerance in non-growing, but not in growing cultures. The failure of rim15 cells to adapt to calorie restriction by entering a robust post-mitotic state resembles cancer cell physiology and shows that retentostat cultivation of yeast strains can provide relevant models for healthy post-mitotic and transformed human cells.

摘要

PAS激酶Rim15被认为可整合来自不同营养感应途径的信号,并在营养物质耗尽时控制酿酒酵母的转录重编程。尽管有此作用,但之前对rim15突变体的转录组分析仅聚焦于生长中的培养物。在本研究中,恒化器培养能够分析Rim15在严重卡路里限制、几乎不生长的条件下的作用。在这些条件下,RIM15的缺失对基因转录的影响比在生长中的培养物中高出10倍以上。转录反应、代谢率和细胞形态表明,Rim15在营养物质耗尽时控制细胞周期停滞中起关键作用。此外,rim15的缺失降低了非生长状态下(而非生长状态下)培养物的热休克耐受性。rim15细胞无法通过进入强大的有丝分裂后状态来适应卡路里限制,这类似于癌细胞生理学,并表明对酵母菌株进行恒化器培养可为健康的有丝分裂后和转化的人类细胞提供相关模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验