CEA/DAM, Le Ripault, F-37260, Monts, France.
Phys Chem Chem Phys. 2014 Mar 21;16(11):5201-12. doi: 10.1039/c3cp54862g.
Binary mixtures of cyclic (TMS) or acyclic sulfones (MIS, EIS and EMS) with EMC or DMC have been used in electrolytes containing LiPF6 (1 M) in both Li4Ti5O12/Li half-cells and Li4+xTi5O12/Li4Ti5O12 symmetric cells and compared with standard EC/EMC or EC/DMC mixtures. In half-cells, sulfone-based electrolytes cannot be satisfactorily cycled owing to the formation of a resistive layer at the lithium interface, which is not stable and generates species (RSO2(-) and RSO3(-)) able to migrate toward the titanate electrode interface. Potentiostatic and galvanostatic tests of Li4Ti5O12/Li half-cells show that charge transfer resistance increases drastically when sulfones are used in the electrolyte composition. Moreover, cyclability and coulombic efficiency are low. Conversely, when symmetric Li4+xTi5O12/Li4Ti5O12 cells are used, it is demonstrated that MIS-(methyl isopropyl sulfone) and TMS-(tetra methyl sulfone) based electrolytes exhibit reasonable electrochemical performances as compared to the EC/DMC or EC/EMC standard mixtures. Surface analysis by XPS of both the Li4+xTi5O12 (partially oxidized) and Li7Ti5O12 (reduced) electrodes taken from symmetric cells reveals that sulfones do not participate in the formation of surface layers. Alkylcarbonates (EMC or DMC), used as co-solvents in sulfone-based binary electrolytes, ensure the formation of surface layers at the titanate interfaces. Therefore, EMC reduction at the two Li4+xTi5O12/electrolyte interfaces in symmetric cells leads to the formation of carbonates, ethers and mineral compounds such as ROCO2Li and Li2CO3. Finally, huge amounts of LiF are detected at the titanate electrode surface, resulting in an increase in the resistivity of symmetric cells and capacity losses.
已将环状(TMS)或无环砜(MIS、EIS 和 EMS)与 EMC 或 DMC 的二元混合物用于含有 LiPF6(1 M)的电解质中,这些电解质分别在 Li4Ti5O12/Li 半电池和 Li4+xTi5O12/Li4Ti5O12 对称电池中进行了测试,并与标准的 EC/EMC 或 EC/DMC 混合物进行了比较。在半电池中,由于在锂界面上形成了不稳定性的电阻层,基于砜的电解质不能令人满意地循环,而且该电阻层会生成可迁移到钛酸盐电极界面的物种(RSO2(-) 和 RSO3(-))。对 Li4Ti5O12/Li 半电池进行恒电位和恒电流测试表明,当砜类用于电解质组成时,电荷转移电阻会急剧增加。此外,循环性能和库仑效率较低。相反,当使用对称的 Li4+xTi5O12/Li4Ti5O12 电池时,证明与 EC/DMC 或 EC/EMC 标准混合物相比,MIS-(甲基异丙基砜)和 TMS-(四甲基砜)基电解质具有合理的电化学性能。从对称电池中取出的部分氧化的 Li4+xTi5O12(部分氧化)和 Li7Ti5O12(还原)电极的 XPS 表面分析表明,砜类不会参与表面层的形成。作为基于砜的二元电解质中的共溶剂的烷基碳酸酯(EMC 或 DMC)确保了在钛酸盐界面形成表面层。因此,在对称电池中的两个 Li4+xTi5O12/电解质界面处,EMC 的还原会导致碳酸盐、醚和矿物化合物(如 ROCO2Li 和 Li2CO3)的形成。最后,在钛酸盐电极表面检测到大量的 LiF,导致对称电池的电阻率增加和容量损失。