State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China.
Plant Cell. 2014 Jan;26(1):410-25. doi: 10.1105/tpc.113.121376. Epub 2014 Jan 31.
In seed plants, a major pathway for sorting of storage proteins to the protein storage vacuole (PSV) depends on the Golgi-derived dense vesicles (DVs). However, the molecular mechanisms regulating the directional trafficking of DVs to PSVs remain largely elusive. Here, we report the functional characterization of the rice (Oryza sativa) glutelin precursor accumulation3 (gpa3) mutant, which exhibits a floury endosperm phenotype and accumulates excess proglutelins in dry seeds. Cytological and immunocytochemistry studies revealed that in the gpa3 mutant, numerous proglutelin-containing DVs are misrouted to the plasma membrane and, via membrane fusion, release their contents into the apoplast to form a new structure named the paramural body. Positional cloning of GPA3 revealed that it encodes a plant-specific kelch-repeat protein that is localized to the trans-Golgi networks, DVs, and PSVs in the developing endosperm. In vitro and in vivo experiments verified that GPA3 directly interacts with the rice Rab5a-guanine exchange factor VPS9a and forms a regulatory complex with Rab5a via VPS9a. Furthermore, our genetic data support the notion that GPA3 acts synergistically with Rab5a and VPS9a to regulate DV-mediated post-Golgi traffic in rice. Our findings provide insights into the molecular mechanisms regulating the plant-specific PSV pathway and expand our knowledge of vesicular trafficking in eukaryotes.
在种子植物中,将贮藏蛋白分拣到蛋白储存液泡(PSV)的主要途径依赖于高尔基体衍生的致密小泡(DVs)。然而,调节 DVs 定向运输到 PSV 的分子机制在很大程度上仍未被揭示。在这里,我们报告了水稻(Oryza sativa)谷蛋白前体积累 3(gpa3)突变体的功能特征,该突变体表现出粉质胚乳表型,并在干种子中积累过多的前谷蛋白。细胞学和免疫细胞化学研究表明,在 gpa3 突变体中,大量含有前谷蛋白的 DVs 被错误地运送到质膜,并通过膜融合将其内容物释放到质外体中,形成一种新的结构,称为周质体。GPA3 的定位克隆表明,它编码一种植物特异性的kelch 重复蛋白,该蛋白定位于发育中的胚乳中的反式高尔基体网络、DVs 和 PSVs。体外和体内实验验证了 GPA3 直接与水稻 Rab5a-GTP 酶激活蛋白 VPS9a 相互作用,并通过 VPS9a 与 Rab5a 形成调节复合物。此外,我们的遗传数据支持 GPA3 与 Rab5a 和 VPS9a 协同作用来调节水稻中 DV 介导的高尔基体后运输的观点。我们的发现为调节植物特异性 PSV 途径的分子机制提供了深入的了解,并扩展了我们对真核生物囊泡运输的认识。