Suppr超能文献

由遗传算法使用显著性模型作为适应度函数生成的人工创建刺激表明,无意视盲在弹出式视觉搜索范式中调节表现。

Artificially created stimuli produced by a genetic algorithm using a saliency model as its fitness function show that Inattentional Blindness modulates performance in a pop-out visual search paradigm.

作者信息

Papera Massimiliano, Cooper Richard P, Richards Anne

机构信息

Mace Experimental Research Laboratories in Neuroscience (MERLiN), Psychological Sciences, Birkbeck College, University of London, UK.

Mace Experimental Research Laboratories in Neuroscience (MERLiN), Psychological Sciences, Birkbeck College, University of London, UK.

出版信息

Vision Res. 2014 Apr;97:31-44. doi: 10.1016/j.visres.2014.01.013. Epub 2014 Feb 5.

Abstract

Salient stimuli are more readily detected than less salient stimuli, and individual differences in such detection may be relevant to why some people fail to notice an unexpected stimulus that appears in their visual field whereas others do notice it. This failure to notice unexpected stimuli is termed 'Inattentional Blindness' and is more likely to occur when we are engaged in a resource-consuming task. A genetic algorithm is described in which artificial stimuli are created using a saliency model as its fitness function. These generated stimuli, which vary in their saliency level, are used in two studies that implement a pop-out visual search task to evaluate the power of the model to discriminate the performance of people who were and were not Inattentionally Blind (IB). In one study the number of orientational filters in the model was increased to check if discriminatory power and the saliency estimation for low-level images could be improved. Results show that the performance of the model does improve when additional filters are included, leading to the conclusion that low-level images may require a higher number of orientational filters for the model to better predict participants' performance. In both studies we found that given the same target patch image (i.e. same saliency value) IB individuals take longer to identify a target compared to non-IB individuals. This suggests that IB individuals require a higher level of saliency for low-level visual features in order to identify target patches.

摘要

显著刺激比不太显著的刺激更容易被检测到,而这种检测中的个体差异可能与为什么有些人没有注意到出现在他们视野中的意外刺激而其他人却注意到了有关。这种未能注意到意外刺激的情况被称为“无意视盲”,当我们从事一项消耗资源的任务时更有可能发生。本文描述了一种遗传算法,其中使用显著性模型作为适应度函数来创建人工刺激。这些生成的刺激在显著性水平上有所不同,被用于两项实施弹出式视觉搜索任务的研究中,以评估该模型区分无意视盲(IB)者和非无意视盲者表现的能力。在一项研究中,增加了模型中定向滤波器的数量,以检查是否可以提高对低层次图像的区分能力和显著性估计。结果表明,当包含额外的滤波器时,模型的性能确实有所提高,从而得出结论,对于低层次图像,模型可能需要更多数量的定向滤波器才能更好地预测参与者的表现。在两项研究中我们都发现,在给定相同目标补丁图像(即相同显著性值)的情况下,与非IB个体相比,IB个体识别目标所需的时间更长。这表明,IB个体为了识别目标补丁,需要更高水平的低层次视觉特征显著性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验