Suppr超能文献

复发性疾病个体化动态治疗方案的优化。

Optimization of individualized dynamic treatment regimes for recurrent diseases.

作者信息

Huang Xuelin, Ning Jing, Wahed Abdus S

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, U.S.A.

出版信息

Stat Med. 2014 Jun 30;33(14):2363-78. doi: 10.1002/sim.6104. Epub 2014 Feb 9.

Abstract

Patients with cancer or other recurrent diseases may undergo a long process of initial treatment, disease recurrences, and salvage treatments. It is important to optimize the multi-stage treatment sequence in this process to maximally prolong patients' survival. Comparing disease-free survival for each treatment stage over penalizes disease recurrences but under penalizes treatment-related mortalities. Moreover, treatment regimes used in practice are dynamic; that is, the choice of next treatment depends on a patient's responses to previous therapies. In this article, using accelerated failure time models, we develop a method to optimize such dynamic treatment regimes. This method utilizes all the longitudinal data collected during the multi-stage process of disease recurrences and treatments, and identifies the optimal dynamic treatment regime for each individual patient by maximizing his or her expected overall survival. We illustrate the application of this method using data from a study of acute myeloid leukemia, for which the optimal treatment strategies for different patient subgroups are identified.

摘要

患有癌症或其他复发性疾病的患者可能要经历初始治疗、疾病复发和挽救治疗的漫长过程。在此过程中优化多阶段治疗顺序以最大程度延长患者生存期非常重要。比较每个治疗阶段的无病生存期会过度惩罚疾病复发,但对治疗相关死亡率的惩罚不足。此外,实际使用的治疗方案是动态的;也就是说,下一治疗的选择取决于患者对先前治疗的反应。在本文中,我们使用加速失效时间模型开发了一种方法来优化此类动态治疗方案。该方法利用在疾病复发和治疗的多阶段过程中收集的所有纵向数据,并通过最大化每个患者的预期总生存期来确定针对每个患者的最佳动态治疗方案。我们使用来自一项急性髓细胞白血病研究的数据说明了该方法的应用,据此确定了不同患者亚组的最佳治疗策略。

相似文献

1
Optimization of individualized dynamic treatment regimes for recurrent diseases.
Stat Med. 2014 Jun 30;33(14):2363-78. doi: 10.1002/sim.6104. Epub 2014 Feb 9.
2
Optimization of multi-stage dynamic treatment regimes utilizing accumulated data.
Stat Med. 2015 Nov 20;34(26):3424-43. doi: 10.1002/sim.6558. Epub 2015 Jun 21.
3
Estimating individualized treatment rules in longitudinal studies with covariate-driven observation times.
Stat Methods Med Res. 2023 May;32(5):868-884. doi: 10.1177/09622802231158733. Epub 2023 Mar 16.
4
Analysis of multi-stage treatments for recurrent diseases.
Stat Med. 2012 Oct 30;31(24):2805-21. doi: 10.1002/sim.5456. Epub 2012 Jul 24.
5
Optimal two-stage dynamic treatment regimes from a classification perspective with censored survival data.
Biometrics. 2018 Dec;74(4):1180-1192. doi: 10.1111/biom.12894. Epub 2018 May 18.
6
Adaptive contrast weighted learning for multi-stage multi-treatment decision-making.
Biometrics. 2017 Mar;73(1):145-155. doi: 10.1111/biom.12539. Epub 2016 May 23.
7
Evaluating Joint Effects of Induction-Salvage Treatment Regimes on Overall Survival in Acute Leukemia.
J R Stat Soc Ser C Appl Stat. 2013 Jan;62(1):67-83. doi: 10.1111/j.1467-9876.2012.01048.x.
8
Bayesian inference for optimal dynamic treatment regimes in practice.
Int J Biostat. 2023 May 17;19(2):309-331. doi: 10.1515/ijb-2022-0073. eCollection 2023 Nov 1.
9
Application of multi-state models in cancer clinical trials.
Clin Trials. 2018 Oct;15(5):489-498. doi: 10.1177/1740774518789098. Epub 2018 Jul 23.
10
Treatment-competing events in dynamic regimes.
Lifetime Data Anal. 2008 Jun;14(2):196-215. doi: 10.1007/s10985-007-9051-3.

引用本文的文献

2
Multi-stage optimal dynamic treatment regimes for survival outcomes with dependent censoring.
Biometrika. 2022 Aug 13;110(2):395-410. doi: 10.1093/biomet/asac047. eCollection 2023 Jun.
3
Model selection for survival individualized treatment rules using the jackknife estimator.
BMC Med Res Methodol. 2022 Dec 22;22(1):328. doi: 10.1186/s12874-022-01811-6.
4
Robustifying Trial-Derived Optimal Treatment Rules for A Target Population.
Electron J Stat. 2019;13(1):1717-1743. doi: 10.1214/19-EJS1540. Epub 2019 Apr 30.
6
Interactive Q-learning for Quantiles.
J Am Stat Assoc. 2017;112(518):638-649. doi: 10.1080/01621459.2016.1155993. Epub 2017 Mar 31.
7
Identifying cost-effective dynamic policies to control epidemics.
Stat Med. 2016 Dec 10;35(28):5189-5209. doi: 10.1002/sim.7047. Epub 2016 Jul 24.
8
Differences in predictions of ODE models of tumor growth: a cautionary example.
BMC Cancer. 2016 Feb 26;16:163. doi: 10.1186/s12885-016-2164-x.
9
Doubly Robust Learning for Estimating Individualized Treatment with Censored Data.
Biometrika. 2015 Mar 1;102(1):151-168. doi: 10.1093/biomet/asu050.

本文引用的文献

1
The Dantzig Selector for Censored Linear Regression Models.
Stat Sin. 2014 Jan 1;24(1):251-2568. doi: 10.5705/ss.2011.220.
2
Evaluating Joint Effects of Induction-Salvage Treatment Regimes on Overall Survival in Acute Leukemia.
J R Stat Soc Ser C Appl Stat. 2013 Jan;62(1):67-83. doi: 10.1111/j.1467-9876.2012.01048.x.
3
Q-learning: a data analysis method for constructing adaptive interventions.
Psychol Methods. 2012 Dec;17(4):478-94. doi: 10.1037/a0029373. Epub 2012 Oct 1.
4
Evaluation of Viable Dynamic Treatment Regimes in a Sequentially Randomized Trial of Advanced Prostate Cancer.
J Am Stat Assoc. 2012 Jun;107(498):493-508. doi: 10.1080/01621459.2011.641416.
5
Analysis of multi-stage treatments for recurrent diseases.
Stat Med. 2012 Oct 30;31(24):2805-21. doi: 10.1002/sim.5456. Epub 2012 Jul 24.
6
Q-LEARNING WITH CENSORED DATA.
Ann Stat. 2012 Feb 1;40(1):529-560. doi: 10.1214/12-AOS968.
8
A robust method for estimating optimal treatment regimes.
Biometrics. 2012 Dec;68(4):1010-8. doi: 10.1111/j.1541-0420.2012.01763.x. Epub 2012 May 2.
10
Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer.
Biometrics. 2011 Dec;67(4):1422-33. doi: 10.1111/j.1541-0420.2011.01572.x. Epub 2011 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验