Huang Xuelin, Ning Jing, Wahed Abdus S
Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, U.S.A.
Stat Med. 2014 Jun 30;33(14):2363-78. doi: 10.1002/sim.6104. Epub 2014 Feb 9.
Patients with cancer or other recurrent diseases may undergo a long process of initial treatment, disease recurrences, and salvage treatments. It is important to optimize the multi-stage treatment sequence in this process to maximally prolong patients' survival. Comparing disease-free survival for each treatment stage over penalizes disease recurrences but under penalizes treatment-related mortalities. Moreover, treatment regimes used in practice are dynamic; that is, the choice of next treatment depends on a patient's responses to previous therapies. In this article, using accelerated failure time models, we develop a method to optimize such dynamic treatment regimes. This method utilizes all the longitudinal data collected during the multi-stage process of disease recurrences and treatments, and identifies the optimal dynamic treatment regime for each individual patient by maximizing his or her expected overall survival. We illustrate the application of this method using data from a study of acute myeloid leukemia, for which the optimal treatment strategies for different patient subgroups are identified.
患有癌症或其他复发性疾病的患者可能要经历初始治疗、疾病复发和挽救治疗的漫长过程。在此过程中优化多阶段治疗顺序以最大程度延长患者生存期非常重要。比较每个治疗阶段的无病生存期会过度惩罚疾病复发,但对治疗相关死亡率的惩罚不足。此外,实际使用的治疗方案是动态的;也就是说,下一治疗的选择取决于患者对先前治疗的反应。在本文中,我们使用加速失效时间模型开发了一种方法来优化此类动态治疗方案。该方法利用在疾病复发和治疗的多阶段过程中收集的所有纵向数据,并通过最大化每个患者的预期总生存期来确定针对每个患者的最佳动态治疗方案。我们使用来自一项急性髓细胞白血病研究的数据说明了该方法的应用,据此确定了不同患者亚组的最佳治疗策略。