Suppr超能文献

通过虚拟筛选鉴定新型5-羟色胺转运体化合物。

Identification of novel serotonin transporter compounds by virtual screening.

作者信息

Gabrielsen Mari, Kurczab Rafał, Siwek Agata, Wolak Małgorzata, Ravna Aina W, Kristiansen Kurt, Kufareva Irina, Abagyan Ruben, Nowak Gabriel, Chilmonczyk Zdzisław, Sylte Ingebrigt, Bojarski Andrzej J

机构信息

Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway , 9037 Tromsø, Norway.

出版信息

J Chem Inf Model. 2014 Mar 24;54(3):933-43. doi: 10.1021/ci400742s. Epub 2014 Feb 26.

Abstract

The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) plays an essential role in the termination of serotonergic neurotransmission by removing 5-HT from the synaptic cleft into the presynaptic neuron. It is also of pharmacological importance being targeted by antidepressants and psychostimulant drugs. Here, five commercial databases containing approximately 3.24 million drug-like compounds have been screened using a combination of two-dimensional (2D) fingerprint-based and three-dimensional (3D) pharmacophore-based screening and flexible docking into multiple conformations of the binding pocket detected in an outward-open SERT homology model. Following virtual screening (VS), selected compounds were evaluated using in vitro screening and full binding assays and an in silico hit-to-lead (H2L) screening was performed to obtain analogues of the identified compounds. Using this multistep VS/H2L approach, 74 active compounds, 46 of which had K(i) values of ≤1000 nM, belonging to 16 structural classes, have been identified, and multiple compounds share no structural resemblance with known SERT binders.

摘要

血清素(5-羟色胺,5-HT)转运体(SERT)通过将5-HT从突触间隙转运到突触前神经元,在血清素能神经传递的终止过程中发挥着至关重要的作用。它在药理学上也具有重要意义,是抗抑郁药和精神兴奋药物的作用靶点。在此,我们使用基于二维(2D)指纹和基于三维(3D)药效团的筛选相结合的方法,并对向外开放的SERT同源模型中检测到的结合口袋的多种构象进行灵活对接,对五个包含约324万种类药物化合物的商业数据库进行了筛选。经过虚拟筛选(VS)后,使用体外筛选和完全结合试验对选定的化合物进行评估,并进行了计算机辅助的从命中到先导(H2L)筛选,以获得已鉴定化合物的类似物。使用这种多步骤的VS/H2L方法,已鉴定出74种活性化合物,其中46种的K(i)值≤1000 nM,属于16个结构类别,并且多种化合物与已知的SERT结合剂没有结构相似性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c02/3985787/9659929e11f8/ci-2013-00742s_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验