Suppr超能文献

基于局部线性表示分类的脑提取

Brain extraction based on locally linear representation-based classification.

作者信息

Huang Meiyan, Yang Wei, Jiang Jun, Wu Yao, Zhang Yu, Chen Wufan, Feng Qianjin

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou, China.

出版信息

Neuroimage. 2014 May 15;92:322-39. doi: 10.1016/j.neuroimage.2014.01.059. Epub 2014 Feb 10.

Abstract

Brain extraction is an important procedure in brain image analysis. Although numerous brain extraction methods have been presented, enhancing brain extraction methods remains challenging because brain MRI images exhibit complex characteristics, such as anatomical variability and intensity differences across different sequences and scanners. To address this problem, we present a Locally Linear Representation-based Classification (LLRC) method for brain extraction. A novel classification framework is derived by introducing the locally linear representation to the classical classification model. Under this classification framework, a common label fusion approach can be considered as a special case and thoroughly interpreted. Locality is important to calculate fusion weights for LLRC; this factor is also considered to determine that Local Anchor Embedding is more applicable in solving locally linear coefficients compared with other linear representation approaches. Moreover, LLRC supplies a way to learn the optimal classification scores of the training samples in the dictionary to obtain accurate classification. The International Consortium for Brain Mapping and the Alzheimer's Disease Neuroimaging Initiative databases were used to build a training dataset containing 70 scans. To evaluate the proposed method, we used four publicly available datasets (IBSR1, IBSR2, LPBA40, and ADNI3T, with a total of 241 scans). Experimental results demonstrate that the proposed method outperforms the four common brain extraction methods (BET, BSE, GCUT, and ROBEX), and is comparable to the performance of BEaST, while being more accurate on some datasets compared with BEaST.

摘要

脑提取是脑图像分析中的一个重要步骤。尽管已经提出了许多脑提取方法,但由于脑MRI图像具有复杂的特征,如不同序列和扫描仪之间的解剖变异性和强度差异,因此改进脑提取方法仍然具有挑战性。为了解决这个问题,我们提出了一种基于局部线性表示的分类(LLRC)方法用于脑提取。通过将局部线性表示引入经典分类模型,导出了一个新颖的分类框架。在这个分类框架下,一种常见的标签融合方法可以被视为一个特殊情况并得到透彻解释。局部性对于计算LLRC的融合权重很重要;这个因素也被认为决定了与其他线性表示方法相比,局部锚定嵌入在求解局部线性系数方面更适用。此外,LLRC提供了一种在字典中学习训练样本的最优分类分数以获得准确分类的方法。国际脑图谱联盟和阿尔茨海默病神经影像倡议数据库被用于构建一个包含70次扫描的训练数据集。为了评估所提出的方法,我们使用了四个公开可用的数据集(IBSR1、IBSR2、LPBA40和ADNI3T,总共241次扫描)。实验结果表明,所提出的方法优于四种常见的脑提取方法(BET、BSE、GCUT和ROBEX),并且与BEaST的性能相当,同时在一些数据集上比BEaST更准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验