Departments of Plant Pathology and Microbiology and Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3632-7. doi: 10.1073/pnas.1318817111. Epub 2014 Feb 14.
The sessile plants have evolved a large number of receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) to modulate diverse biological processes, including plant innate immunity. Phosphorylation of the RLK/RLCK complex constitutes an essential step to initiate immune signaling. Two Arabidopsis plasma membrane-resident RLKs, flagellin-sensing 2 and brassinosteroid insensitive 1-associated kinase 1 (BAK1), interact with RLCK Botrytis-induced kinase 1 (BIK1) to initiate plant immune responses to bacterial flagellin. BAK1 directly phosphorylates BIK1 and positively regulates plant immunity. Classically defined as a serine/threonine kinase, BIK1 is shown here to possess tyrosine kinase activity with mass spectrometry, immunoblot, and genetic analyses. BIK1 is autophosphorylated at multiple tyrosine (Y) residues in addition to serine/threonine residues. Importantly, BAK1 is able to phosphorylate BIK1 at both tyrosine and serine/threonine residues. BIK1Y150 is likely catalytically important as the mutation blocks both tyrosine and serine/threonine kinase activity, whereas Y243 and Y250 are more specifically involved in tyrosine phosphorylation. The BIK1 tyrosine phosphorylation plays a crucial role in BIK1-mediated plant innate immunity as the transgenic plants carrying BIK1Y150F, Y243F, or Y250F (the mutation of tyrosine to phenylalanine) failed to complement the bik1 mutant deficiency in immunity. Our data indicate that plant RLCK BIK1 is a nonreceptor dual-specificity kinase and both tyrosine and serine/threonine kinase activities are required for its functions in plant immune signaling. Together with the previous finding of BAK1 to be autophosphorylated at tyrosine residues, our results unveiled the tyrosine phosphorylation cascade as a common regulatory mechanism that controls membrane-resident receptor signaling in plants and metazoans.
固着植物已经进化出大量的受体样激酶(RLKs)和受体样细胞质激酶(RLCKs)来调节多种生物过程,包括植物先天免疫。RLK/RLCK 复合物的磷酸化是启动免疫信号的一个重要步骤。两个拟南芥质膜驻留 RLK,鞭毛感应 2 和油菜素内酯不敏感 1 相关激酶 1(BAK1),与 RLCK Botrytis 诱导激酶 1(BIK1)相互作用,启动植物对细菌鞭毛的免疫反应。BAK1 直接磷酸化 BIK1,并正向调节植物免疫。BIK1 被经典地定义为丝氨酸/苏氨酸激酶,本文通过质谱、免疫印迹和遗传分析表明,它具有酪氨酸激酶活性。BIK1 除了丝氨酸/苏氨酸残基外,还在多个酪氨酸(Y)残基上发生自身磷酸化。重要的是,BAK1 能够在酪氨酸和丝氨酸/苏氨酸残基上磷酸化 BIK1。BIK1Y150 可能是催化重要的,因为突变阻止了酪氨酸和丝氨酸/苏氨酸激酶活性,而 Y243 和 Y250 则更具体地参与了酪氨酸磷酸化。BIK1 的酪氨酸磷酸化在 BIK1 介导的植物先天免疫中起着至关重要的作用,因为携带 BIK1Y150F、Y243F 或 Y250F(酪氨酸突变为苯丙氨酸)的转基因植物不能弥补 bik1 突变体在免疫中的缺陷。我们的数据表明,植物 RLCK BIK1 是一种非受体双特异性激酶,其酪氨酸和丝氨酸/苏氨酸激酶活性对于其在植物免疫信号转导中的功能都是必需的。结合之前发现的 BAK1 在酪氨酸残基上的自身磷酸化,我们的结果揭示了酪氨酸磷酸化级联反应是一种控制植物和后生动物质膜驻留受体信号的常见调节机制。