Suppr超能文献

累积器集合的响应时间。

Response times from ensembles of accumulators.

机构信息

Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University, Nashville, TN 37240.

出版信息

Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2848-53. doi: 10.1073/pnas.1310577111. Epub 2014 Feb 3.

Abstract

Decision-making is explained by psychologists through stochastic accumulator models and by neurophysiologists through the activity of neurons believed to instantiate these models. We investigated an overlooked scaling problem: How does a response time (RT) that can be explained by a single model accumulator arise from numerous, redundant accumulator neurons, each of which individually appears to explain the variability of RT? We explored this scaling problem by developing a unique ensemble model of RT, called e pluribus unum, which embodies the well-known dictum "out of many, one." We used the e pluribus unum model to analyze the RTs produced by ensembles of redundant, idiosyncratic stochastic accumulators under various termination mechanisms and accumulation rate correlations in computer simulations of ensembles of varying size. We found that predicted RT distributions are largely invariant to ensemble size if the accumulators share at least modestly correlated accumulation rates and RT is not governed by the most extreme accumulators. Under these regimes the termination times of individual accumulators was predictive of ensemble RT. We also found that the threshold measured on individual accumulators, corresponding to the firing rate of neurons measured at RT, can be invariant with RT but is equivalent to the specified model threshold only when the rate correlation is very high.

摘要

心理学家通过随机累积器模型来解释决策,神经生理学家则通过被认为体现这些模型的神经元活动来解释决策。我们研究了一个被忽视的缩放问题:如何从众多冗余的累积器神经元中产生一个可以用单个模型累积器来解释的反应时间(RT),而每个神经元个体似乎都能解释 RT 的可变性?我们通过开发一种独特的 RT 整体模型,即“e pluribus unum”,来探索这个缩放问题,该模型体现了广为人知的格言“合多为一”。我们使用 e pluribus unum 模型来分析在各种终止机制和累积率相关性下,由具有不同大小的各种大小的冗余、独特的随机累积器组成的集合产生的 RT,并在计算机模拟中进行了分析。我们发现,如果累积器具有适度相关的累积率,并且 RT 不受最极端的累积器控制,那么预测的 RT 分布在很大程度上与集合大小无关。在这些情况下,个体累积器的终止时间可以预测集合 RT。我们还发现,在个体累积器上测量的阈值(对应于在 RT 时测量的神经元的发射率)可以与 RT 不变,但仅当速率相关性非常高时,才与指定的模型阈值等效。

相似文献

1
Response times from ensembles of accumulators.
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2848-53. doi: 10.1073/pnas.1310577111. Epub 2014 Feb 3.
2
Accumulators, Neurons, and Response Time.
Trends Neurosci. 2019 Dec;42(12):848-860. doi: 10.1016/j.tins.2019.10.001. Epub 2019 Nov 5.
3
Neurally constrained modeling of speed-accuracy tradeoff during visual search: gated accumulation of modulated evidence.
J Neurophysiol. 2019 Apr 1;121(4):1300-1314. doi: 10.1152/jn.00507.2018. Epub 2019 Feb 6.
4
Evidence of common and separate eye and hand accumulators underlying flexible eye-hand coordination.
J Neurophysiol. 2017 Jan 1;117(1):348-364. doi: 10.1152/jn.00688.2016. Epub 2016 Oct 26.
5
From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search.
J Neurosci. 2012 Mar 7;32(10):3433-46. doi: 10.1523/JNEUROSCI.4622-11.2012.
6
A common stochastic accumulator with effector-dependent noise can explain eye-hand coordination.
J Neurophysiol. 2015 Apr 1;113(7):2033-48. doi: 10.1152/jn.00802.2014. Epub 2015 Jan 7.
7
Path ensembles and path sampling in nonequilibrium stochastic systems.
J Chem Phys. 2007 Sep 14;127(10):104103. doi: 10.1063/1.2775439.
8
Neural mechanisms of saccade target selection: gated accumulator model of the visual-motor cascade.
Eur J Neurosci. 2011 Jun;33(11):1991-2002. doi: 10.1111/j.1460-9568.2011.07715.x.
9
Ensembles of spiking neurons with noise support optimal probabilistic inference in a dynamically changing environment.
PLoS Comput Biol. 2014 Oct 23;10(10):e1003859. doi: 10.1371/journal.pcbi.1003859. eCollection 2014 Oct.
10
Redundancy and synergy of neuronal ensembles in motor cortex.
J Neurosci. 2005 Apr 27;25(17):4207-16. doi: 10.1523/JNEUROSCI.4697-04.2005.

引用本文的文献

1
A population representation of the confidence in a decision in the parietal cortex.
Cell Rep. 2025 Apr 22;44(4):115526. doi: 10.1016/j.celrep.2025.115526. Epub 2025 Apr 11.
2
The Tweedledum and Tweedledee of dynamic decisions: Discriminating between diffusion decision and accumulator models.
Psychon Bull Rev. 2025 Apr;32(2):588-613. doi: 10.3758/s13423-024-02587-0. Epub 2024 Oct 1.
3
Fast decisions reflect biases; slow decisions do not.
Phys Rev E. 2024 Aug;110(2-1):024305. doi: 10.1103/PhysRevE.110.024305.
4
Efficiency in redundancy.
Sci Rep. 2024 Jul 24;14(1):17109. doi: 10.1038/s41598-024-68127-x.
5
Joint Modelling of Latent Cognitive Mechanisms Shared Across Decision-Making Domains.
Comput Brain Behav. 2024;7(1):1-22. doi: 10.1007/s42113-023-00192-3. Epub 2024 Jan 11.
6
Fast decisions reflect biases, slow decisions do not.
ArXiv. 2024 Jan 2:arXiv:2401.00306v2.
7
Feedforward attentional selection in sensory cortex.
Nat Commun. 2023 Sep 26;14(1):5993. doi: 10.1038/s41467-023-41745-1.
8
A spatially continuous diffusion model of visual working memory.
Cogn Psychol. 2023 Sep;145:101595. doi: 10.1016/j.cogpsych.2023.101595. Epub 2023 Aug 31.
9
Relating a Spiking Neural Network Model and the Diffusion Model of Decision-Making.
Comput Brain Behav. 2022 Sep;5(3):279-301. doi: 10.1007/s42113-022-00143-4. Epub 2022 Jun 13.
10
Population temporal structure supplements the rate code during sensorimotor transformations.
Curr Biol. 2022 Mar 14;32(5):1010-1025.e9. doi: 10.1016/j.cub.2022.01.015. Epub 2022 Feb 2.

本文引用的文献

1
Neuroscience. The brain activity map.
Science. 2013 Mar 15;339(6125):1284-5. doi: 10.1126/science.1236939. Epub 2013 Mar 7.
2
Inferring decoding strategies from choice probabilities in the presence of correlated variability.
Nat Neurosci. 2013 Feb;16(2):235-42. doi: 10.1038/nn.3309. Epub 2013 Jan 13.
3
Neural mechanisms of speed-accuracy tradeoff.
Neuron. 2012 Nov 8;76(3):616-28. doi: 10.1016/j.neuron.2012.08.030.
4
A supramodal accumulation-to-bound signal that determines perceptual decisions in humans.
Nat Neurosci. 2012 Dec;15(12):1729-35. doi: 10.1038/nn.3248. Epub 2012 Oct 28.
5
Neural dynamics of choice: single-trial analysis of decision-related activity in parietal cortex.
J Neurosci. 2012 Sep 12;32(37):12684-701. doi: 10.1523/JNEUROSCI.5752-11.2012.
6
Linear deterministic accumulator models of simple choice.
Front Psychol. 2012 Aug 23;3:292. doi: 10.3389/fpsyg.2012.00292. eCollection 2012.
7
An accumulator model for spontaneous neural activity prior to self-initiated movement.
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):E2904-13. doi: 10.1073/pnas.1210467109. Epub 2012 Aug 6.
8
From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search.
J Neurosci. 2012 Mar 7;32(10):3433-46. doi: 10.1523/JNEUROSCI.4622-11.2012.
9
Stop signals provide cross inhibition in collective decision-making by honeybee swarms.
Science. 2012 Jan 6;335(6064):108-11. doi: 10.1126/science.1210361. Epub 2011 Dec 8.
10
Single-trial magnetoencephalography signals encoded as an unfolding decision process.
Neuroimage. 2012 Feb 15;59(4):3604-10. doi: 10.1016/j.neuroimage.2011.10.091. Epub 2011 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验