Suppr超能文献

复杂剂量探索研究的简易基准。

Simple benchmark for complex dose finding studies.

作者信息

Cheung Ying Kuen

机构信息

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York 10032, U.S.A.

出版信息

Biometrics. 2014 Jun;70(2):389-97. doi: 10.1111/biom.12158. Epub 2014 Feb 25.

Abstract

While a general goal of early phase clinical studies is to identify an acceptable dose for further investigation, modern dose finding studies and designs are highly specific to individual clinical settings. In addition, as outcome-adaptive dose finding methods often involve complex algorithms, it is crucial to have diagnostic tools to evaluate the plausibility of a method's simulated performance and the adequacy of the algorithm. In this article, we propose a simple technique that provides an upper limit, or a benchmark, of accuracy for dose finding methods for a given design objective. The proposed benchmark is nonparametric optimal in the sense of O'Quigley et al. (2002, Biostatistics 3, 51-56), and is demonstrated by examples to be a practical accuracy upper bound for model-based dose finding methods. We illustrate the implementation of the technique in the context of phase I trials that consider multiple toxicities and phase I/II trials where dosing decisions are based on both toxicity and efficacy, and apply the benchmark to several clinical examples considered in the literature. By comparing the operating characteristics of a dose finding method to that of the benchmark, we can form quick initial assessments of whether the method is adequately calibrated and evaluate its sensitivity to the dose-outcome relationships.

摘要

虽然早期临床研究的总体目标是确定可接受的剂量以便进一步研究,但现代剂量探索研究和设计针对个体临床情况具有高度特异性。此外,由于结果适应性剂量探索方法通常涉及复杂算法,拥有诊断工具来评估方法模拟性能的合理性和算法的充分性至关重要。在本文中,我们提出一种简单技术,该技术为给定设计目标的剂量探索方法提供准确性的上限或基准。所提出的基准在奥奎利等人(2002年,《生物统计学》3,51 - 56)的意义上是非参数最优的,并通过示例证明是基于模型的剂量探索方法的实际准确性上限。我们在考虑多种毒性的I期试验以及给药决策基于毒性和疗效的I/II期试验的背景下说明了该技术的实施,并将该基准应用于文献中考虑的几个临床实例。通过将剂量探索方法的操作特征与基准的操作特征进行比较,我们可以对该方法是否经过充分校准形成快速初步评估,并评估其对剂量 - 结果关系的敏感性。

相似文献

1
Simple benchmark for complex dose finding studies.
Biometrics. 2014 Jun;70(2):389-97. doi: 10.1111/biom.12158. Epub 2014 Feb 25.
2
Phase I/II dose-finding design for molecularly targeted agent: Plateau determination using adaptive randomization.
Stat Methods Med Res. 2018 Feb;27(2):466-479. doi: 10.1177/0962280216631763. Epub 2016 Mar 17.
3
Continual reassessment method with multiple toxicity constraints.
Biostatistics. 2011 Apr;12(2):386-98. doi: 10.1093/biostatistics/kxq062. Epub 2010 Sep 28.
5
A benchmark for dose finding studies with continuous outcomes.
Biostatistics. 2020 Apr 1;21(2):189-201. doi: 10.1093/biostatistics/kxy045.
6
Evaluating the performance of copula models in phase I-II clinical trials under model misspecification.
BMC Med Res Methodol. 2014 Apr 14;14:51. doi: 10.1186/1471-2288-14-51.
7
Two-stage approach based on zone and dose findings for two-agent combination Phase I/II trials.
J Biopharm Stat. 2018;28(6):1025-1037. doi: 10.1080/10543406.2018.1434190. Epub 2018 Feb 8.
8
Bayesian dose-finding designs for combination of molecularly targeted agents assuming partial stochastic ordering.
Stat Med. 2015 Feb 28;34(5):859-75. doi: 10.1002/sim.6376. Epub 2014 Nov 21.
9
A web application for evaluating Phase I methods using a non-parametric optimal benchmark.
Clin Trials. 2017 Oct;14(5):553-557. doi: 10.1177/1740774517715456. Epub 2017 Jun 24.
10
Calibration of prior variance in the Bayesian continual reassessment method.
Stat Med. 2011 Jul 30;30(17):2081-9. doi: 10.1002/sim.4139. Epub 2011 Mar 17.

引用本文的文献

1
A new function for drug combination dose finding trials.
Sci Rep. 2024 Feb 12;14(1):3483. doi: 10.1038/s41598-024-53155-4.
2
3
CFO: Calibration-free odds design for phase I/II clinical trials.
Stat Methods Med Res. 2022 Jun;31(6):1051-1066. doi: 10.1177/09622802221079353. Epub 2022 Mar 3.
4
Operating characteristics are needed to properly evaluate the scientific validity of phase I protocols.
Contemp Clin Trials. 2021 Sep;108:106517. doi: 10.1016/j.cct.2021.106517. Epub 2021 Jul 25.
5
Bayesian adaptive model selection design for optimal biological dose finding in phase I/II clinical trials.
Biostatistics. 2023 Apr 14;24(2):277-294. doi: 10.1093/biostatistics/kxab028.
6
Seamless phase I/II design for novel anticancer agents with competing disease progression.
Stat Med. 2021 Sep 20;40(21):4568-4581. doi: 10.1002/sim.9080. Epub 2021 Jul 2.
7
A benchmark for dose-finding studies with unknown ordering.
Biostatistics. 2022 Jul 18;23(3):721-737. doi: 10.1093/biostatistics/kxaa054.
8
Reprioritizing Risk and Benefit: The Future of Study Design in Early-Phase Cancer Research.
Ethics Hum Res. 2019 Nov;41(6):2-11. doi: 10.1002/eahr.500033.
9
Dose-finding designs for cumulative toxicities using multiple constraints.
Biostatistics. 2019 Jan 1;20(1):17-29. doi: 10.1093/biostatistics/kxx059.
10
Scientific Review of Phase I Protocols With Novel Dose-Escalation Designs: How Much Information Is Needed?
J Clin Oncol. 2015 Jul 1;33(19):2221-5. doi: 10.1200/JCO.2014.59.8466. Epub 2015 May 4.

本文引用的文献

1
Sample size formulae for the Bayesian continual reassessment method.
Clin Trials. 2013;10(6):852-61. doi: 10.1177/1740774513497294. Epub 2013 Aug 21.
2
Toxicity burden score: a novel approach to summarize multiple toxic effects.
Ann Oncol. 2012 Feb;23(2):537-41. doi: 10.1093/annonc/mdr146. Epub 2011 May 2.
4
Continual reassessment method with multiple toxicity constraints.
Biostatistics. 2011 Apr;12(2):386-98. doi: 10.1093/biostatistics/kxq062. Epub 2010 Sep 28.
5
Utility-based optimization of combination therapy using ordinal toxicity and efficacy in phase I/II trials.
Biometrics. 2010 Jun;66(2):532-40. doi: 10.1111/j.1541-0420.2009.01302.x. Epub 2009 Aug 10.
6
The continual reassessment method for multiple toxicity grades: a Bayesian quasi-likelihood approach.
Biometrics. 2007 Mar;63(1):173-9. doi: 10.1111/j.1541-0420.2006.00666.x.
7
Sequential designs for logistic phase I clinical trials.
J Biopharm Stat. 2006;16(5):605-21. doi: 10.1080/10543400600860337.
8
Bayesian dose-finding in phase I/II clinical trials using toxicity and efficacy odds ratios.
Biometrics. 2006 Sep;62(3):777-84. doi: 10.1111/j.1541-0420.2006.00534.x.
9
Dose-finding based on efficacy-toxicity trade-offs.
Biometrics. 2004 Sep;60(3):684-93. doi: 10.1111/j.0006-341X.2004.00218.x.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验