Department of Biochemistry, University of Saskatchewan, Health Sciences Building, Saskatoon, Saskatchewan, S7N 5E5, Canada.
Department of Biochemistry, University of Saskatchewan, Health Sciences Building, Saskatoon, Saskatchewan, S7N 5E5, Canada.
J Biol Chem. 2014 Apr 11;289(15):10551-10565. doi: 10.1074/jbc.M113.538892. Epub 2014 Feb 25.
Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding and remodeling of structured DNA or RNA, which is coordinated by conserved helicase motifs. FANCJ is a DNA helicase that is genetically linked to Fanconi anemia, breast cancer, and ovarian cancer. Here, we characterized two Fanconi anemia patient mutations, R251C and Q255H, that are localized in helicase motif Ia. Our genetic complementation analysis revealed that both the R251C and Q255H alleles failed to rescue cisplatin sensitivity of a FANCJ null cell line as detected by cell survival or γ-H2AX foci formation. Furthermore, our biochemical assays demonstrated that both purified recombinant proteins abolished DNA helicase activity and failed to disrupt the DNA-protein complex. Intriguingly, R251C impaired DNA binding ability to single-strand DNA and double-strand DNA, whereas Q255H retained higher binding activity to these DNA substrates compared with wild-type FANCJ protein. Consequently, R251C abolished its DNA-dependent ATP hydrolysis activity, whereas Q255H retained normal ATPase activity. Physically, R251C had reduced ATP binding ability, whereas Q255H had normal ATP binding ability and could translocate on single-strand DNA. Although both proteins were recruited to damage sites in our laser-activated confocal assays, they lost their DNA repair function, which explains why they exerted a domain negative effect when expressed in a wild-type background. Taken together, our work not only reveals the structural function of helicase motif Ia but also provides the molecular pathology of FANCJ in related diseases.
解旋酶是一种分子马达,能够将 ATP 水解的能量与结构化 DNA 或 RNA 的解旋和重塑相偶联,这一过程由保守的解旋酶基序协调。FANCJ 是一种与范可尼贫血症、乳腺癌和卵巢癌相关的 DNA 解旋酶。在这里,我们对两个位于解旋酶基序 Ia 中的 Fanconi 贫血症患者突变 R251C 和 Q255H 进行了表征。我们的遗传互补分析表明,R251C 和 Q255H 等位基因都无法挽救 FANCJ 缺失细胞系对顺铂敏感性的恢复,这一点可以通过细胞存活或 γ-H2AX 焦点形成来检测。此外,我们的生化分析表明,两种纯化的重组蛋白均丧失了 DNA 解旋酶活性,并且无法破坏 DNA-蛋白复合物。有趣的是,R251C 削弱了与单链 DNA 和双链 DNA 的 DNA 结合能力,而 Q255H 与野生型 FANCJ 蛋白相比,对这些 DNA 底物保持了更高的结合活性。因此,R251C 消除了其 DNA 依赖性 ATP 水解活性,而 Q255H 保留了正常的 ATP 酶活性。实际上,R251C 降低了 ATP 结合能力,而 Q255H 具有正常的 ATP 结合能力并且可以在单链 DNA 上易位。尽管这两种蛋白质都在我们的激光激活共聚焦测定中被招募到损伤部位,但它们失去了其 DNA 修复功能,这解释了为什么它们在野生型背景中表达时会产生结构域负效应。总之,我们的工作不仅揭示了解旋酶基序 Ia 的结构功能,还提供了与相关疾病中 FANCJ 的分子病理学。