Zurauskienė Justina, Kirk Paul, Thorne Thomas, Pinney John, Stumpf Michael
Theoretical Systems Biology Group, Centre for Bioinformatics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
Bioinformatics. 2014 Jul 1;30(13):1892-8. doi: 10.1093/bioinformatics/btu069. Epub 2014 Feb 26.
One of the challenging questions in modelling biological systems is to characterize the functional forms of the processes that control and orchestrate molecular and cellular phenotypes. Recently proposed methods for the analysis of metabolic pathways, for example, dynamic flux estimation, can only provide estimates of the underlying fluxes at discrete time points but fail to capture the complete temporal behaviour. To describe the dynamic variation of the fluxes, we additionally require the assumption of specific functional forms that can capture the temporal behaviour. However, it also remains unclear how to address the noise which might be present in experimentally measured metabolite concentrations.
Here we propose a novel approach to modelling metabolic fluxes: derivative processes that are based on multiple-output Gaussian processes (MGPs), which are a flexible non-parametric Bayesian modelling technique. The main advantages that follow from MGPs approach include the natural non-parametric representation of the fluxes and ability to impute the missing data in between the measurements. Our derivative process approach allows us to model changes in metabolite derivative concentrations and to characterize the temporal behaviour of metabolic fluxes from time course data. Because the derivative of a Gaussian process is itself a Gaussian process, we can readily link metabolite concentrations to metabolic fluxes and vice versa. Here we discuss how this can be implemented in an MGP framework and illustrate its application to simple models, including nitrogen metabolism in Escherichia coli.
R code is available from the authors upon request.
在对生物系统进行建模时,一个具有挑战性的问题是确定控制和协调分子及细胞表型的过程的功能形式。例如,最近提出的用于分析代谢途径的方法,如动态通量估计,只能在离散时间点提供潜在通量的估计值,却无法捕捉完整的时间行为。为了描述通量的动态变化,我们还需要假设能够捕捉时间行为的特定功能形式。然而,如何处理实验测量的代谢物浓度中可能存在的噪声仍不明确。
在此,我们提出一种用于代谢通量建模的新方法:基于多输出高斯过程(MGP)的导数过程,这是一种灵活的非参数贝叶斯建模技术。MGP方法带来的主要优势包括通量的自然非参数表示以及在测量之间插补缺失数据的能力。我们的导数过程方法使我们能够对代谢物导数浓度的变化进行建模,并从时间序列数据中表征代谢通量的时间行为。由于高斯过程的导数本身就是一个高斯过程,我们可以很容易地将代谢物浓度与代谢通量联系起来,反之亦然。在此,我们讨论如何在MGP框架中实现这一点,并说明其在简单模型中的应用,包括大肠杆菌中的氮代谢。
如有需要,可向作者索取R代码。