Suppr超能文献

使用二维连续时间隐马尔可夫模型对青光眼进展进行纵向建模。

Longitudinal modeling of glaucoma progression using 2-dimensional continuous-time hidden Markov model.

作者信息

Liu Yu-Ying, Ishikawa Hiroshi, Chen Mei, Wollstein Gadi, Schumnan Joel S, Rehg James M

机构信息

College of Computing, Georgia Institute of Technology, Atlanta, USA.

UPMC Eye Center, University of Pittsburgh School of Medicine, Pittsburgh, USA.

出版信息

Med Image Comput Comput Assist Interv. 2013;16(Pt 2):444-51. doi: 10.1007/978-3-642-40763-5_55.

Abstract

We propose a 2D continuous-time Hidden Markov Model (2D CT-HMM) for glaucoma progression modeling given longitudinal structural and functional measurements. CT-HMM is suitable for modeling longitudinal medical data consisting of visits at arbitrary times, and 2D state structure is more appropriate for glaucoma since the time courses of functional and structural degeneration are usually different. The learned model not only corroborates the clinical findings that structural degeneration is more evident than functional degeneration in early glaucoma and the opposite is observed in more advanced stages, but also reveals the exact stages where the trend reverses. A method to detect time segments of fast progression is also proposed. Our results show that this detector can effectively identify patients with rapid degeneration. The model and the derived detector can be of clinical value for glaucoma monitoring.

摘要

我们提出了一种二维连续时间隐马尔可夫模型(2D CT - HMM),用于基于纵向结构和功能测量的青光眼进展建模。CT - HMM适用于对由任意时间就诊组成的纵向医学数据进行建模,并且二维状态结构对于青光眼更为合适,因为功能和结构退化的时间进程通常不同。所学习到的模型不仅证实了临床发现,即在早期青光眼中结构退化比功能退化更明显,而在更晚期阶段则观察到相反情况,而且还揭示了趋势逆转的确切阶段。我们还提出了一种检测快速进展时间段的方法。我们的结果表明,该检测器可以有效地识别快速退化的患者。该模型和派生的检测器对于青光眼监测具有临床价值。

相似文献

1
Longitudinal modeling of glaucoma progression using 2-dimensional continuous-time hidden Markov model.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):444-51. doi: 10.1007/978-3-642-40763-5_55.
3
Automatic inference of articulated spine models in CT images using high-order Markov Random Fields.
Med Image Anal. 2011 Aug;15(4):426-37. doi: 10.1016/j.media.2011.01.006. Epub 2011 Feb 12.
4
Deformable 2D-3D registration of the pelvis with a limited field of view, using shape statistics.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):519-26. doi: 10.1007/978-3-540-75759-7_63.
5
Global registration of multiple bone fragments using statistical atlas models: feasibility experiments.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5374-7. doi: 10.1109/IEMBS.2008.4650429.
6
A novel approach for image alignment using a Markov-Gibbs appearance model.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):734-41. doi: 10.1007/11866763_90.
7
Maximum confidence hidden markov modeling for face recognition.
IEEE Trans Pattern Anal Mach Intell. 2008 Apr;30(4):606-16. doi: 10.1109/TPAMI.2007.70715.
8
Lung nodule detection via Bayesian voxel labeling.
Inf Process Med Imaging. 2007;20:134-46. doi: 10.1007/978-3-540-73273-0_12.
9
3D/2D image registration: the impact of X-ray views and their number.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):450-7.
10
Sparse appearance learning based automatic coronary sinus segmentation in CTA.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):779-87. doi: 10.1007/978-3-319-10404-1_97.

引用本文的文献

3
Use of artificial intelligence in forecasting glaucoma progression.
Taiwan J Ophthalmol. 2023 May 23;13(2):168-183. doi: 10.4103/tjo.TJO-D-23-00022. eCollection 2023 Apr-Jun.
4
Learning parametric policies and transition probability models of markov decision processes from data.
Eur J Control. 2021 Jan;57:68-75. doi: 10.1016/j.ejcon.2020.04.003. Epub 2020 May 26.
5
Forecasting Retinal Nerve Fiber Layer Thickness from Multimodal Temporal Data Incorporating OCT Volumes.
Ophthalmol Glaucoma. 2020 Jan-Feb;3(1):14-24. doi: 10.1016/j.ogla.2019.11.001. Epub 2019 Nov 8.
6
Predicting outcomes of chronic kidney disease from EMR data based on Random Forest Regression.
Math Biosci. 2019 Apr;310:24-30. doi: 10.1016/j.mbs.2019.02.001. Epub 2019 Feb 12.
7
Predictive Modeling of the Progression of Alzheimer's Disease with Recurrent Neural Networks.
Sci Rep. 2018 Jun 15;8(1):9161. doi: 10.1038/s41598-018-27337-w.
9
Doctor AI: Predicting Clinical Events via Recurrent Neural Networks.
JMLR Workshop Conf Proc. 2016 Aug;56:301-318. Epub 2016 Dec 10.
10
Using recurrent neural network models for early detection of heart failure onset.
J Am Med Inform Assoc. 2017 Mar 1;24(2):361-370. doi: 10.1093/jamia/ocw112.

本文引用的文献

1
An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease.
Neuroimage. 2012 Apr 15;60(3):1880-9. doi: 10.1016/j.neuroimage.2012.01.062. Epub 2012 Jan 16.
2
Clinical use of OCT in assessing glaucoma progression.
Ophthalmic Surg Lasers Imaging. 2011 Jul;42 Suppl(0):S6-S14. doi: 10.3928/15428877-20110627-01.
3
Progression of liver cirrhosis to HCC: an application of hidden Markov model.
BMC Med Res Methodol. 2011 Apr 4;11:38. doi: 10.1186/1471-2288-11-38.
4
Spatio-temporal analysis of brain MRI images using hidden Markov models.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):160-8. doi: 10.1007/978-3-642-15745-5_20.
5
Glaucoma is second leading cause of blindness globally.
Bull World Health Organ. 2004 Nov;82(11):887-8. Epub 2004 Dec 14.
6
Causes and prevalence of visual impairment among adults in the United States.
Arch Ophthalmol. 2004 Apr;122(4):477-85. doi: 10.1001/archopht.122.4.477.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验