Liu Yu-Ying, Ishikawa Hiroshi, Chen Mei, Wollstein Gadi, Schumnan Joel S, Rehg James M
College of Computing, Georgia Institute of Technology, Atlanta, USA.
UPMC Eye Center, University of Pittsburgh School of Medicine, Pittsburgh, USA.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):444-51. doi: 10.1007/978-3-642-40763-5_55.
We propose a 2D continuous-time Hidden Markov Model (2D CT-HMM) for glaucoma progression modeling given longitudinal structural and functional measurements. CT-HMM is suitable for modeling longitudinal medical data consisting of visits at arbitrary times, and 2D state structure is more appropriate for glaucoma since the time courses of functional and structural degeneration are usually different. The learned model not only corroborates the clinical findings that structural degeneration is more evident than functional degeneration in early glaucoma and the opposite is observed in more advanced stages, but also reveals the exact stages where the trend reverses. A method to detect time segments of fast progression is also proposed. Our results show that this detector can effectively identify patients with rapid degeneration. The model and the derived detector can be of clinical value for glaucoma monitoring.
我们提出了一种二维连续时间隐马尔可夫模型(2D CT - HMM),用于基于纵向结构和功能测量的青光眼进展建模。CT - HMM适用于对由任意时间就诊组成的纵向医学数据进行建模,并且二维状态结构对于青光眼更为合适,因为功能和结构退化的时间进程通常不同。所学习到的模型不仅证实了临床发现,即在早期青光眼中结构退化比功能退化更明显,而在更晚期阶段则观察到相反情况,而且还揭示了趋势逆转的确切阶段。我们还提出了一种检测快速进展时间段的方法。我们的结果表明,该检测器可以有效地识别快速退化的患者。该模型和派生的检测器对于青光眼监测具有临床价值。