Suppr超能文献

牛蛙(北美牛蛙)球囊毛细胞电共振与频率调谐模型。

A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana.

作者信息

Hudspeth A J, Lewis R S

机构信息

Department of Physiology, University of California School of Medicine, San Francisco 94143-0444.

出版信息

J Physiol. 1988 Jun;400:275-97. doi: 10.1113/jphysiol.1988.sp017120.

Abstract
  1. Electrical resonance in solitary hair cells was examined under several experimental conditions using the tight-seal recording technique in the whole-cell current-clamp mode. 2. Resonance was characterized by the frequency and quality factor of oscillations in membrane potential evoked by depolarizing current pulses. Oscillation frequency increased with depolarization, from about 90 Hz at the resting potential to a limiting value of about 250 Hz. The quality factor of the oscillations was a bell-shaped function of membrane potential that reached a maximum of up to 12.6 at a potential slightly positive to the resting potential. 3. Pharmacological experiments were performed to assess which of three ionic currents participate in electrical resonance. Reduction of the voltage-gated Ca2+ current (ICa) and the Ca2+-activated K+ current (IK(Ca)) by lowering the extracellular Ca2+ concentration, or reduction of IK(Ca) with tetraethylammonium ion (TEA) degraded the resonance. In contrast, blockade of the transient K+ current (IA) with 4-aminopyridine (4-AP) had no significant effect. 4. To test the sufficiency of the Ca2+ and the Ca2+-activated K+ currents to account for resonance, we developed a model using mathematical descriptions of the two currents derived in the preceding paper (Hudspeth & Lewis, 1988), with additional terms for leakage conductance and membrane capacitance. The model correctly predicts the oscillatory responses to applied current pulses, including the non-linear dependences of oscillation frequency and quality factor on membrane potential. 5. Simulations of current-clamp experiments in the presence of a reduced extracellular Ca2+ concentration or of TEA were generated respectively by decreasing the model's values for the maximal Ca2+ or Ca2+-activated K+ conductances. The model's predictions of membrane-potential oscillations under these conditions agree qualitatively with experimental results, providing further support for the model as a description of the resonance mechanism. 6. To identify the factors most important in determining the hair cell's resonance properties, we systematically altered the values of selected parameters in the model. Frequency was most profoundly influenced by increasing the magnitude and activation rate of the Ca2+-activated K+ conductance, whereas the quality factor was most sensitive to increases in the level of the Ca2+ conductance. 7. By including a term describing activation of the hair cell's mechanically sensitive transduction conductance, we used the model to predict a tuning curve for responses to mechanical inputs of various frequencies.(ABSTRACT TRUNCATED AT 400 WORDS)
摘要
  1. 使用全细胞电流钳模式下的紧密封记录技术,在几种实验条件下研究了单个毛细胞中的电共振。2. 共振通过去极化电流脉冲诱发的膜电位振荡的频率和品质因数来表征。振荡频率随着去极化而增加,从静息电位时的约90赫兹增加到约250赫兹的极限值。振荡的品质因数是膜电位的钟形函数,在略高于静息电位的电位下达到最大值12.6。3. 进行了药理学实验,以评估三种离子电流中的哪一种参与电共振。通过降低细胞外Ca2+浓度来降低电压门控Ca2+电流(ICa)和Ca2+激活的K+电流(IK(Ca)),或者用四乙铵离子(TEA)降低IK(Ca),都会使共振减弱。相反,用4-氨基吡啶(4-AP)阻断瞬时K+电流(IA)没有显著影响。4. 为了测试Ca2+和Ca2+激活的K+电流对共振的充分性,我们使用前一篇论文(Hudspeth & Lewis,1988)中推导的这两种电流的数学描述,开发了一个模型,并增加了泄漏电导和膜电容的项。该模型正确地预测了对施加电流脉冲的振荡响应,包括振荡频率和品质因数对膜电位的非线性依赖性。5. 通过分别降低模型中最大Ca2+或Ca2+激活的K+电导的值,模拟了细胞外Ca2+浓度降低或存在TEA时的电流钳实验。该模型在这些条件下对膜电位振荡的预测与实验结果定性一致,为该模型作为共振机制的描述提供了进一步支持。6. 为了确定在决定毛细胞共振特性方面最重要的因素,我们系统地改变了模型中选定参数的值。频率受Ca2+激活的K+电导的幅度和激活速率增加的影响最大,而品质因数对Ca2+电导水平的增加最敏感。7. 通过纳入一个描述毛细胞机械敏感转导电导激活的项,我们使用该模型预测了对各种频率机械输入的响应的调谐曲线。(摘要截断于400字)

相似文献

3
Potassium currents in hair cells isolated from the cochlea of the chick.
J Physiol. 1990 Oct;429:529-51. doi: 10.1113/jphysiol.1990.sp018271.
4
Variations in the ensemble of potassium currents underlying resonance in turtle hair cells.
J Physiol. 1996 Dec 1;497 ( Pt 2)(Pt 2):395-412. doi: 10.1113/jphysiol.1996.sp021776.
6
Variation of membrane properties in hair cells isolated from the turtle cochlea.
J Physiol. 1987 Apr;385:207-42. doi: 10.1113/jphysiol.1987.sp016492.
7
The transduction channel of hair cells from the bull-frog characterized by noise analysis.
J Physiol. 1986 Jun;375:195-227. doi: 10.1113/jphysiol.1986.sp016113.
10
Potassium currents in inner hair cells isolated from the guinea-pig cochlea.
J Physiol. 1990 Feb;421:263-91. doi: 10.1113/jphysiol.1990.sp017944.

引用本文的文献

3
A linearized modeling framework for the frequency selectivity in neurons postsynaptic to vibration receptors.
Cogn Neurodyn. 2024 Aug;18(4):2061-2075. doi: 10.1007/s11571-024-10070-8. Epub 2024 Feb 20.
5
Ion channels as molecular targets of glioblastoma electrotherapy.
Front Cell Neurosci. 2023 Mar 17;17:1133984. doi: 10.3389/fncel.2023.1133984. eCollection 2023.
7
Of mice and chickens: Revisiting the RC time constant problem.
Hear Res. 2022 Sep 15;423:108422. doi: 10.1016/j.heares.2021.108422. Epub 2021 Dec 17.
8
Diverse Mechanisms of Sound Frequency Discrimination in the Vertebrate Cochlea.
Trends Neurosci. 2020 Feb;43(2):88-102. doi: 10.1016/j.tins.2019.12.003. Epub 2020 Jan 15.
9
Theoretical Modeling and Experimental Detection of the Extracellular Phasic Impedance Modulation in Rabbit Hearts.
Front Physiol. 2019 Jul 9;10:883. doi: 10.3389/fphys.2019.00883. eCollection 2019.
10
Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons.
Neuron. 2017 Oct 11;96(2):446-460.e9. doi: 10.1016/j.neuron.2017.09.004. Epub 2017 Sep 21.

本文引用的文献

1
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
2
The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
J Physiol. 1980 Sep;306:79-125. doi: 10.1113/jphysiol.1980.sp013387.
3
An electrical tuning mechanism in turtle cochlear hair cells.
J Physiol. 1981 Mar;312:377-412. doi: 10.1113/jphysiol.1981.sp013634.
6
A micromechanical contribution to cochlear tuning and tonotopic organization.
Science. 1983 Nov 4;222(4623):508-10. doi: 10.1126/science.6623089.
7
Voltage- and ion-dependent conductances in solitary vertebrate hair cells.
Nature. 1983;304(5926):538-41. doi: 10.1038/304538a0.
8
Frequency tuning in a frog vestibular organ.
Nature. 1983;304(5926):536-8. doi: 10.1038/304536a0.
9
Kinetics of the receptor current in bullfrog saccular hair cells.
J Neurosci. 1983 May;3(5):962-76. doi: 10.1523/JNEUROSCI.03-05-00962.1983.
10
Cochlear mechanics.
Annu Rev Physiol. 1984;46:231-46. doi: 10.1146/annurev.ph.46.030184.001311.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验