Schrumpf Marion, Kaiser Klaus, Schulze Ernst-Detlef
Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany.
Soil Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
PLoS One. 2014 Feb 20;9(2):e89364. doi: 10.1371/journal.pone.0089364. eCollection 2014.
Temperate forests are assumed to be organic carbon (OC) sinks, either because of biomass increases upon elevated CO2 in the atmosphere and large nitrogen deposition, or due to their age structure. Respective changes in soil OC and total nitrogen (TN) storage have rarely been proven. We analysed OC, TN, and bulk densities of 100 soil cores sampled along a regular grid in an old-growth deciduous forest at the Hainich National Park, Germany, in 2004 and again in 2009. Concentrations of OC and TN increased significantly from 2004 to 2009, mostly in the upper 0-20 cm of the mineral soil. Changes in the fine earth masses per soil volume impeded the detection of OC changes based on fixed soil volumes. When calculated on average fine earth masses, OC stocks increased by 323 ± 146 g m(-2) and TN stocks by 39 ± 10 g m(-2) at 0-20 cm soil depth from 2004 to 2009, giving average annual accumulation rates of 65 ± 29 g OC m(-2) yr(-1) and 7.8 ± 2 g N m(-2) yr(-1). Accumulation rates were largest in the upper part of the B horizon. Regional increases in forest biomass, either due to recovery of forest biomass from previous forest management or to fertilization by elevated CO2 and N deposition, are likely causes for the gains in soil OC and TN. As TN increased stronger (1.3% yr(-1) of existing stocks) than OC (0.9% yr(-1)), the OC-to-TN ratios declined significantly. Results of regression analyses between changes in OC and TN stocks suggest that at no change in OC, still 3.8 g TN m(-2) yr(-1) accumulated. Potential causes for the increase in TN in excess to OC are fixation of inorganic N by the clay-rich soil or changes in microbial communities. The increase in soil OC corresponded on average to 6-13% of the estimated increase in net biome productivity.
温带森林被认为是有机碳(OC)汇,这要么是因为大气中二氧化碳浓度升高和大量氮沉降导致生物量增加,要么是由于其年龄结构。土壤有机碳和总氮(TN)储量的相应变化很少得到证实。我们分析了2004年和2009年在德国海尼希国家公园的一片原始落叶林中,沿着规则网格采集的100个土壤芯的有机碳、总氮和容重。从2004年到2009年,有机碳和总氮浓度显著增加,主要集中在矿质土壤上部0 - 20厘米处。每单位土壤体积细土质量的变化阻碍了基于固定土壤体积对有机碳变化的检测。当按平均细土质量计算时,2004年至2009年期间,0 - 20厘米土壤深度处的有机碳储量增加了323±146克/平方米,总氮储量增加了39±10克/平方米,平均年积累速率分别为65±29克有机碳/平方米·年和7.8±2克氮/平方米·年。积累速率在B层上部最大。森林生物量的区域增加,要么是由于先前森林经营后森林生物量的恢复,要么是由于二氧化碳和氮沉降增加导致的施肥效应,可能是土壤有机碳和总氮增加的原因。由于总氮增加得比有机碳更强(占现有储量的1.3%/年),有机碳与总氮的比率显著下降。有机碳和总氮储量变化之间的回归分析结果表明,在有机碳无变化的情况下,仍有3.8克总氮/平方米·年积累。总氮相对于有机碳增加的潜在原因是富含粘土的土壤对无机氮的固定或微生物群落的变化。土壤有机碳的增加平均相当于估计的净生物群系生产力增加的6% - 13%。