Suppr超能文献

利用扩展的肺部数据对重度哮喘研究项目参与者进行无监督表型分析。

Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data.

作者信息

Wu Wei, Bleecker Eugene, Moore Wendy, Busse William W, Castro Mario, Chung Kian Fan, Calhoun William J, Erzurum Serpil, Gaston Benjamin, Israel Elliot, Curran-Everett Douglas, Wenzel Sally E

机构信息

Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pa.

Center for Human Genomics, School of Medicine, Wake Forest University, Winston-Salem, NC.

出版信息

J Allergy Clin Immunol. 2014 May;133(5):1280-8. doi: 10.1016/j.jaci.2013.11.042. Epub 2014 Feb 28.

Abstract

BACKGROUND

Previous studies have identified asthma phenotypes based on small numbers of clinical, physiologic, or inflammatory characteristics. However, no studies have used a wide range of variables using machine learning approaches.

OBJECTIVES

We sought to identify subphenotypes of asthma by using blood, bronchoscopic, exhaled nitric oxide, and clinical data from the Severe Asthma Research Program with unsupervised clustering and then characterize them by using supervised learning approaches.

METHODS

Unsupervised clustering approaches were applied to 112 clinical, physiologic, and inflammatory variables from 378 subjects. Variable selection and supervised learning techniques were used to select relevant and nonredundant variables and address their predictive values, as well as the predictive value of the full variable set.

RESULTS

Ten variable clusters and 6 subject clusters were identified, which differed and overlapped with previous clusters. Patients with traditionally defined severe asthma were distributed through subject clusters 3 to 6. Cluster 4 identified patients with early-onset allergic asthma with low lung function and eosinophilic inflammation. Patients with later-onset, mostly severe asthma with nasal polyps and eosinophilia characterized cluster 5. Cluster 6 asthmatic patients manifested persistent inflammation in blood and bronchoalveolar lavage fluid and exacerbations despite high systemic corticosteroid use and side effects. Age of asthma onset, quality of life, symptoms, medications, and health care use were some of the 51 nonredundant variables distinguishing subject clusters. These 51 variables classified test cases with 88% accuracy compared with 93% accuracy with all 112 variables.

CONCLUSION

The unsupervised machine learning approaches used here provide unique insights into disease, confirming other approaches while revealing novel additional phenotypes.

摘要

背景

以往的研究已根据少量临床、生理或炎症特征确定了哮喘表型。然而,尚无研究使用机器学习方法纳入广泛的变量。

目的

我们试图通过对重度哮喘研究项目中的血液、支气管镜检查、呼出一氧化氮和临床数据进行无监督聚类来识别哮喘的亚表型,然后使用监督学习方法对其进行特征描述。

方法

对378名受试者的112个临床、生理和炎症变量应用无监督聚类方法。使用变量选择和监督学习技术来选择相关且无冗余的变量,并评估其预测价值以及整个变量集的预测价值。

结果

识别出10个变量簇和6个受试者簇,它们与先前的簇有所不同且存在重叠。传统定义的重度哮喘患者分布在受试者簇3至6中。簇4识别出肺功能低下且伴有嗜酸性粒细胞炎症的早发性过敏性哮喘患者。簇5的特征是迟发性、大多为伴有鼻息肉和嗜酸性粒细胞增多的重度哮喘患者。簇6的哮喘患者尽管大量使用全身糖皮质激素且出现副作用,但血液和支气管肺泡灌洗液中仍存在持续性炎症且病情加重。哮喘发病年龄、生活质量、症状、药物治疗和医疗保健使用情况是区分受试者簇的51个无冗余变量中的一部分。与使用所有112个变量时93%的准确率相比,这51个变量对测试病例的分类准确率为88%。

结论

此处使用的无监督机器学习方法为疾病提供了独特的见解,在证实其他方法的同时揭示了新的额外表型。

相似文献

1
Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data.
J Allergy Clin Immunol. 2014 May;133(5):1280-8. doi: 10.1016/j.jaci.2013.11.042. Epub 2014 Feb 28.
2
Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma.
Am J Respir Crit Care Med. 2019 Jun 1;199(11):1358-1367. doi: 10.1164/rccm.201808-1543OC.
3
Asthma Phenotypes Defined From Parameters Obtained During Recovery From a Hospital-Treated Exacerbation.
J Allergy Clin Immunol Pract. 2018 Nov-Dec;6(6):1960-1967. doi: 10.1016/j.jaip.2018.02.012. Epub 2018 Mar 1.
4
Severe adult-onset asthma: A distinct phenotype.
J Allergy Clin Immunol. 2013 Aug;132(2):336-41. doi: 10.1016/j.jaci.2013.04.052. Epub 2013 Jun 24.
5
Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program.
Am J Respir Crit Care Med. 2010 Feb 15;181(4):315-23. doi: 10.1164/rccm.200906-0896OC. Epub 2009 Nov 5.
6
Lung function decline and variable airway inflammatory pattern: longitudinal analysis of severe asthma.
J Allergy Clin Immunol. 2014 Aug;134(2):287-94. doi: 10.1016/j.jaci.2014.04.005. Epub 2014 Jun 11.
8
Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis.
J Allergy Clin Immunol. 2014 Jun;133(6):1557-63.e5. doi: 10.1016/j.jaci.2013.10.011. Epub 2013 Dec 9.
9
Clinical Phenotypes of Nasal Polyps and Comorbid Asthma Based on Cluster Analysis of Disease History.
J Allergy Clin Immunol Pract. 2018 Jul-Aug;6(4):1297-1305.e1. doi: 10.1016/j.jaip.2017.09.020. Epub 2017 Oct 31.
10
Novel Machine Learning Identifies 5 Asthma Phenotypes Using Cluster Analysis of Real-World Data.
J Allergy Clin Immunol Pract. 2024 Aug;12(8):2084-2091.e4. doi: 10.1016/j.jaip.2024.04.035. Epub 2024 Apr 27.

引用本文的文献

1
Sex, hormones, and lung health.
Physiol Rev. 2025 Aug 6. doi: 10.1152/physrev.00026.2024.
2
Detection and prediction of real-world severe asthma phenotypes by application of machine learning to electronic health records.
J Allergy Clin Immunol Glob. 2025 Apr 17;4(3):100473. doi: 10.1016/j.jacig.2025.100473. eCollection 2025 Aug.
3
Sex Differences in Lung B Cell Responses in a Murine Model of Asthma.
Int Arch Allergy Immunol. 2025 Apr 29:1-12. doi: 10.1159/000546024.
6
PI3K pathway activation in severe asthma is linked to steroid insensitivity and adverse outcomes.
J Allergy Clin Immunol Glob. 2025 Feb 12;4(2):100439. doi: 10.1016/j.jacig.2025.100439. eCollection 2025 May.
7
Exploring the Asthma - Obesity Link Using Advanced Imaging Techniques.
Physiol Res. 2025 Mar 21;74(1):19-29. doi: 10.33549/physiolres.935390.
8
Innate Immunity and Asthma Exacerbations: Insights From Human Models.
Immunol Rev. 2025 Mar;330(1):e70016. doi: 10.1111/imr.70016.
9
Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery.
Exploration (Beijing). 2024 May 24;5(1):20230165. doi: 10.1002/EXP.20230165. eCollection 2025 Feb.
10
Computational Phenotyping of Obstructive Airway Diseases: A Systematic Review.
J Asthma Allergy. 2025 Feb 6;18:113-160. doi: 10.2147/JAA.S463572. eCollection 2025.

本文引用的文献

1
Exhaled nitric oxide measurement confirms 2 severe wheeze phenotypes in young children from the Trousseau Asthma Program.
J Allergy Clin Immunol. 2012 Oct;130(4):1005-7.e1. doi: 10.1016/j.jaci.2012.07.007. Epub 2012 Aug 22.
2
Asthma phenotypes: the evolution from clinical to molecular approaches.
Nat Med. 2012 May 4;18(5):716-25. doi: 10.1038/nm.2678.
3
Novel severe wheezy young children phenotypes: boys atopic multiple-trigger and girls nonatopic uncontrolled wheeze.
J Allergy Clin Immunol. 2012 Jul;130(1):103-10.e8. doi: 10.1016/j.jaci.2012.02.041. Epub 2012 Apr 13.
4
Two novel, severe asthma phenotypes identified during childhood using a clustering approach.
Eur Respir J. 2012 Jul;40(1):55-60. doi: 10.1183/09031936.00123411. Epub 2012 Jan 20.
5
The investigation of asthma phenotypes.
Curr Opin Allergy Clin Immunol. 2011 Oct;11(5):393-9. doi: 10.1097/ACI.0b013e32834a955a.
6
The molecular mechanisms of glucocorticoids-mediated neutrophil survival.
Curr Drug Targets. 2011 Apr;12(4):556-62. doi: 10.2174/138945011794751555.
8
A large-scale, consortium-based genomewide association study of asthma.
N Engl J Med. 2010 Sep 23;363(13):1211-1221. doi: 10.1056/NEJMoa0906312.
10
Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program.
Am J Respir Crit Care Med. 2010 Feb 15;181(4):315-23. doi: 10.1164/rccm.200906-0896OC. Epub 2009 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验