Suppr超能文献

基于步态相关性分析的人体识别

Gait correlation analysis based human identification.

作者信息

Chen Jinyan

机构信息

School of Computer Software, Tianjin University, Tianjin 300072, China.

出版信息

ScientificWorldJournal. 2014 Jan 29;2014:168275. doi: 10.1155/2014/168275. eCollection 2014.

Abstract

Human gait identification aims to identify people by a sequence of walking images. Comparing with fingerprint or iris based identification, the most important advantage of gait identification is that it can be done at a distance. In this paper, silhouette correlation analysis based human identification approach is proposed. By background subtracting algorithm, the moving silhouette figure can be extracted from the walking images sequence. Every pixel in the silhouette has three dimensions: horizontal axis (x), vertical axis (y), and temporal axis (t). By moving every pixel in the silhouette image along these three dimensions, we can get a new silhouette. The correlation result between the original silhouette and the new one can be used as the raw feature of human gait. Discrete Fourier transform is used to extract features from this correlation result. Then, these features are normalized to minimize the affection of noise. Primary component analysis method is used to reduce the features' dimensions. Experiment based on CASIA database shows that this method has an encouraging recognition performance.

摘要

人体步态识别旨在通过一系列行走图像来识别人员。与基于指纹或虹膜的识别相比,步态识别最重要的优势在于它可以在一定距离外进行。本文提出了基于轮廓相关性分析的人体识别方法。通过背景减法算法,可以从行走图像序列中提取移动的轮廓图。轮廓中的每个像素具有三个维度:横轴(x)、纵轴(y)和时间轴(t)。通过沿着这三个维度移动轮廓图像中的每个像素,我们可以得到一个新的轮廓。原始轮廓与新轮廓之间的相关性结果可作为人体步态的原始特征。使用离散傅里叶变换从该相关性结果中提取特征。然后,对这些特征进行归一化以最小化噪声的影响。主成分分析方法用于降低特征的维度。基于中科院自动化所(CASIA)数据库的实验表明,该方法具有令人鼓舞的识别性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc9/3925574/831167f6a873/TSWJ2014-168275.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验