Suppr超能文献

通过矩阵束的联合对角化对 DNA 序列进行图形表示。

Graphical representation for DNA sequences via joint diagonalization of matrix pencil.

出版信息

IEEE J Biomed Health Inform. 2013 May;17(3):503-11. doi: 10.1109/titb.2012.2227146.

Abstract

Graphical representations provide us with a tool allowing visual inspection of the sequences. To visualize and compare different DNA sequences, a novel alignment-free method is proposed in this paper for both graphical representation and similarity analysis of sequences. We introduce a transformation to represent each DNA sequence with neighboring nucleotide matrix. Then, based on approximate joint diagonalization theory, we transform each DNA primary sequence into a corresponding eigenvalue vector (EVV), which can be considered as numerical characterization of DNA sequence. Meanwhile, we get graphical representation for DNA sequence via the plot of EVV in 2-D plane. Moreover, using k-means, we cluster these feature curves of sequences into several reasonable subclasses. In addition, similarity analyses are performed by computing the distances among the obtained vectors. This approach contains more sequence information, and it analyzes all the involved sequence information jointly rather than separately. A typical dendrogram constructed by this method demonstrates the effectiveness of our approach.

摘要

图形表示为我们提供了一种工具,允许我们直观地检查序列。为了可视化和比较不同的 DNA 序列,本文提出了一种新的无比对方法,用于序列的图形表示和相似性分析。我们引入了一种变换,用相邻核苷酸矩阵表示每个 DNA 序列。然后,基于近似联合对角化理论,我们将每个 DNA 原始序列转换为相应的特征值向量(EVV),可以将其视为 DNA 序列的数值特征。同时,我们通过在 2-D 平面上绘制 EVV 来获得 DNA 序列的图形表示。此外,我们使用 k-means 将这些序列特征曲线聚类为几个合理的子类。此外,通过计算获得的向量之间的距离来进行相似性分析。该方法包含更多的序列信息,并且联合而不是分别分析所有涉及的序列信息。通过该方法构建的典型聚类树表明了我们方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验