Llobet J, Sansa M, Gerbolés M, Mestres N, Arbiol J, Borrisé X, Pérez-Murano F
Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Bellaterra E-08193, Catalonia, Spain.
Nanotechnology. 2014 Apr 4;25(13):135302. doi: 10.1088/0957-4484/25/13/135302. Epub 2014 Mar 4.
We present the fabrication of silicon nanowire (SiNW) mechanical resonators by a resistless process based on focused ion beam local gallium implantation, selective silicon etching and diffusive boron doping. Suspended, doubly clamped SiNWs fabricated by this process presents a good electrical conductivity which enables the electrical read-out of the SiNW oscillation. During the fabrication process, gallium implantation induces the amorphization of silicon that, together with the incorporation of gallium into the irradiated volume, increases the electrical resistivity to values higher than 3 Ω m, resulting in an unacceptably high resistance for electrical transduction. We show that the conductivity of the SiNWs can be restored by performing a high temperature doping process, which allows us to recover the crystalline structure of the silicon and to achieve a controlled resistivity of the structures. Raman spectroscopy and TEM microscopy are used to characterize the recovery of crystallinity, while electrical measurements show a resistivity of 10(-4) Ω m. This resistivity allows to obtain excellent electromechanical transduction, which is employed to characterize the high frequency mechanical response by electrical methods.
我们展示了通过基于聚焦离子束局部镓注入、选择性硅蚀刻和扩散硼掺杂的无抗蚀剂工艺制造硅纳米线(SiNW)机械谐振器。通过该工艺制造的悬浮双端夹紧SiNW具有良好的导电性,这使得能够对SiNW振荡进行电学读出。在制造过程中,镓注入会导致硅的非晶化,这与镓掺入被辐照区域一起,使电阻率增加到高于3Ω·m的值,导致用于电转换的电阻高得不可接受。我们表明,通过执行高温掺杂工艺可以恢复SiNW的导电性,这使我们能够恢复硅的晶体结构并实现结构的可控电阻率。拉曼光谱和透射电子显微镜用于表征结晶度的恢复,而电学测量显示电阻率为10^(-4)Ω·m。这种电阻率允许获得优异的机电转换,用于通过电学方法表征高频机械响应。