Suppr超能文献

通过基于项目反应理论的药动学建模提高阿尔茨海默病协作组认知评估(ADAS-cog)数据的利用率。

Improved utilization of ADAS-cog assessment data through item response theory based pharmacometric modeling.

作者信息

Ueckert Sebastian, Plan Elodie L, Ito Kaori, Karlsson Mats O, Corrigan Brian, Hooker Andrew C

机构信息

Pharmacometrics Research Group Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, SE-751 24, Uppsala, Sweden,

出版信息

Pharm Res. 2014 Aug;31(8):2152-65. doi: 10.1007/s11095-014-1315-5. Epub 2014 Mar 5.

Abstract

PURPOSE

This work investigates improved utilization of ADAS-cog data (the primary outcome in Alzheimer's disease (AD) trials of mild and moderate AD) by combining pharmacometric modeling and item response theory (IRT).

METHODS

A baseline IRT model characterizing the ADAS-cog was built based on data from 2,744 individuals. Pharmacometric methods were used to extend the baseline IRT model to describe longitudinal ADAS-cog scores from an 18-month clinical study with 322 patients. Sensitivity of the ADAS-cog items in different patient populations as well as the power to detect a drug effect in relation to total score based methods were assessed with the IRT based model.

RESULTS

IRT analysis was able to describe both total and item level baseline ADAS-cog data. Longitudinal data were also well described. Differences in the information content of the item level components could be quantitatively characterized and ranked for mild cognitively impairment and mild AD populations. Based on clinical trial simulations with a theoretical drug effect, the IRT method demonstrated a significantly higher power to detect drug effect compared to the traditional method of analysis.

CONCLUSION

A combined framework of IRT and pharmacometric modeling permits a more effective and precise analysis than total score based methods and therefore increases the value of ADAS-cog data.

摘要

目的

本研究通过结合药代动力学建模和项目反应理论(IRT),探讨如何更好地利用ADAS-cog数据(轻度和中度阿尔茨海默病(AD)试验中的主要结局)。

方法

基于2744名个体的数据构建了一个表征ADAS-cog的基线IRT模型。采用药代动力学方法扩展基线IRT模型,以描述来自322例患者的18个月临床研究中的纵向ADAS-cog评分。使用基于IRT的模型评估不同患者群体中ADAS-cog项目的敏感性,以及与基于总分的方法相比检测药物效应的能力。

结果

IRT分析能够描述ADAS-cog的总分和项目水平的基线数据。纵向数据也得到了很好的描述。对于轻度认知障碍和轻度AD人群,可以对项目水平成分的信息含量差异进行定量表征和排序。基于具有理论药物效应的临床试验模拟,与传统分析方法相比,IRT方法显示出更高的检测药物效应的能力。

结论

IRT和药代动力学建模的联合框架允许进行比基于总分的方法更有效和精确的分析,从而提高了ADAS-cog数据的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验