Jin Ruifa, Tang Shanshan, Luo Dongmei
College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, 024000, China,
J Mol Model. 2014 Mar;20(3):2169. doi: 10.1007/s00894-014-2169-9. Epub 2014 Mar 5.
The interactions between chemosensors, donor-π-acceptor (D-π-A) dipolar organoboron derivatives, and different (CN⁻, F⁻, Cl⁻, and Br⁻) anions have been theoretically investigated using DFT approaches. Theoretical investigations have been performed to explore the optical, electronic, charge transport, and stability properties of organoboron derivatives as charge transport and luminescent materials for organic light emitting devices (OLEDs). It turned out that the unique selectivity of organoboron derivatives for F⁻/CN⁻ is ascribed to the formation of chemosensors complexes. The frontier molecular orbitals (FMOs) and local density of states analysis have turned out that the vertical electronic transitions of absorption and emission for chemosensors and their F⁻/CN⁻ complexes are characterized as intramolecular charge transfer (ICT). The formation of complexes has effect on the distribution of FMOs and the flowing direction of electronic density for vertical transition. The study of substituent effects suggests that the derivatives with thiophene (2), furan (3), and 1H-pyrrole (4) fragments, are expected to be promising candidates for ratiometric fluorescent fluoride and cyanide chemosensors as well as chromogenic chemosensors, whereas derivatives with pyridine (5) and pyrimidine (6) fragments can serve as chromogenic chemosensors only. Furthermore, all the derivatives are promising luminescent and hole transport materials and 2, 3, 5, and 6 can serve as electron transport materials for OLEDs.
利用密度泛函理论(DFT)方法,从理论上研究了化学传感器、供体-π-受体(D-π-A)偶极有机硼衍生物与不同阴离子(CN⁻、F⁻、Cl⁻和Br⁻)之间的相互作用。已开展理论研究,以探索有机硼衍生物作为有机发光器件(OLED)的电荷传输和发光材料的光学、电子、电荷传输及稳定性特性。结果表明,有机硼衍生物对F⁻/CN⁻的独特选择性归因于化学传感器配合物的形成。前线分子轨道(FMO)和态密度局部分析结果表明,化学传感器及其F⁻/CN⁻配合物的吸收和发射垂直电子跃迁具有分子内电荷转移(ICT)特征。配合物的形成对FMO的分布以及垂直跃迁的电子密度流动方向有影响。取代基效应研究表明,具有噻吩(2)、呋喃(3)和1H-吡咯(4)片段的衍生物有望成为比率荧光氟化物和氰化物化学传感器以及显色化学传感器的候选材料,而具有吡啶(5)和嘧啶(6)片段的衍生物仅可作为显色化学传感器。此外,所有衍生物都是有前景的发光和空穴传输材料,2、3、5和6可作为OLED的电子传输材料。