Laboratory of Retrovirology, Department of Medical Biology and BioMed Group, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.
J Virol. 2014 May;88(10):5661-76. doi: 10.1128/JVI.03717-13. Epub 2014 Mar 5.
The tripartite motif (TRIM) family of proteins includes the TRIM5α antiretroviral restriction factor. TRIM5α from many Old World and some New World monkeys can restrict the human immunodeficiency virus type 1 (HIV-1), while human TRIM5α restricts N-tropic murine leukemia virus (N-MLV). TRIM5α forms highly dynamic cytoplasmic bodies (CBs) that associate with and translocate on microtubules. However, the functional involvement of microtubules or other cytoskeleton-associated factors in the viral restriction process had not been shown. Here, we demonstrate the dependency of TRIM5α-mediated restriction on microtubule-mediated transport. Pharmacological disruption of the microtubule network using nocodazole or disabling it using paclitaxel (originally named taxol) decreased the restriction of N-MLV and HIV-1 by human or simian alleles of TRIM5α, respectively. In addition, pharmacological inhibition of dynein motor complexes using erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and small interfering RNA-mediated depletion of the dynein heavy chain (DHC) similarly decreased TRIM5α-mediated restriction. The loss in restriction resulting from either the disassembly of microtubules or the disruption of dynein motor activity was seen for both endogenous and overexpressed TRIM5α and was not due to differences in protein stability or cell viability. Both nocodazole treatment and DHC depletion interfered with the dynamics of TRIM5α CBs, increasing their size and altering their intracellular localization. In addition, nocodazole, paclitaxel, and DHC depletion were all found to increase the stability of HIV-1 cores in infected cells, providing an alternative explanation for the decreased restriction. In conclusion, association with microtubules and the translocation activity of dynein motor complexes are required to achieve efficient restriction by TRIM5α.
The primate innate cellular defenses against infection by retroviruses include a protein named TRIM5α, belonging to the family of restriction factors. TRIM5α is present in the cytoplasm, where it can intercept incoming retroviruses shortly after their entry. How TRIM5α manages to be present at the appropriate subcytoplasmic location to interact with its target is unknown. We hypothesized that TRIM5α, either as a soluble protein or a high-molecular-weight complex (the cytoplasmic body), is transported within the cytoplasm by a molecular motor called the dynein complex, which is known to interact with and move along microtubules. Our results show that destructuring microtubules or crippling their function decreased the capacity of human or simian TRIM5α to restrict their retroviral targets. Inhibiting dynein motor activity, or reducing the expression of a key component of this complex, similarly affected TRIM5α-mediated restriction. Thus, we have identified specific cytoskeleton structures involved in innate antiretroviral defenses.
蛋白三聚体结构域(TRIM)家族包括抗病毒限制因子 TRIM5α。来自许多旧世界和一些新世界猴的 TRIM5α 可以限制人类免疫缺陷病毒 1(HIV-1),而人类 TRIM5α 限制 N-嗜性鼠白血病病毒(N-MLV)。TRIM5α 形成高度动态的细胞质体(CB),与微管相关联并在微管上移位。然而,微管或其他细胞骨架相关因子在病毒限制过程中的功能参与尚未得到证明。在这里,我们证明了 TRIM5α 介导的限制依赖于微管介导的运输。使用诺考达唑或紫杉醇(原名紫杉醇)破坏微管网络或使其失活分别降低了人或灵长类 TRIM5α 等位基因对 N-MLV 和 HIV-1 的限制。此外,使用红霉素-9-(2-羟基-3-壬基)腺嘌呤(EHNA)抑制动力蛋白马达复合物和用小干扰 RNA 耗尽动力蛋白重链(DHC)的药理学抑制也同样降低了 TRIM5α 介导的限制。微管解聚或动力蛋白马达活性的破坏导致的限制丧失可见于内源性和过表达的 TRIM5α,并且不是由于蛋白稳定性或细胞活力的差异所致。诺考达唑处理和 DHC 耗尽均干扰了 TRIM5α CB 的动态,增加了它们的大小并改变了它们的细胞内定位。此外,诺考达唑、紫杉醇和 DHC 耗竭均发现增加了感染细胞中 HIV-1 核心的稳定性,为限制减少提供了另一种解释。总之,与微管的关联和动力蛋白马达复合物的转位活性是 TRIM5α 实现有效限制所必需的。
灵长类先天细胞防御逆转录病毒感染包括一种名为 TRIM5α 的蛋白,它属于限制因子家族。TRIM5α 存在于细胞质中,可以在其进入后的短时间内截获进入的逆转录病毒。TRIM5α 如何设法处于适当的亚细胞质位置以与其靶标相互作用尚不清楚。我们假设 TRIM5α 无论是作为可溶性蛋白还是高分子量复合物(细胞质体),都可以通过一种称为动力蛋白复合物的分子马达在细胞质中运输,已知该复合物与微管相互作用并沿微管移动。我们的结果表明,破坏微管或破坏其功能会降低人或灵长类 TRIM5α 限制其逆转录病毒靶标的能力。抑制动力蛋白马达活性或减少该复合物的关键组成部分的表达同样会影响 TRIM5α 介导的限制。因此,我们已经确定了参与先天抗病毒防御的特定细胞骨架结构。