Suppr超能文献

在大规模社交网络中检测情绪感染。

Detecting emotional contagion in massive social networks.

作者信息

Coviello Lorenzo, Sohn Yunkyu, Kramer Adam D I, Marlow Cameron, Franceschetti Massimo, Christakis Nicholas A, Fowler James H

机构信息

Electrical and Computer Engineering Department, University of California San Diego, San Diego, California, United States of America.

Political Science Department, University of California San Diego, San Diego, California, United States of America.

出版信息

PLoS One. 2014 Mar 12;9(3):e90315. doi: 10.1371/journal.pone.0090315. eCollection 2014.

Abstract

Happiness and other emotions spread between people in direct contact, but it is unclear whether massive online social networks also contribute to this spread. Here, we elaborate a novel method for measuring the contagion of emotional expression. With data from millions of Facebook users, we show that rainfall directly influences the emotional content of their status messages, and it also affects the status messages of friends in other cities who are not experiencing rainfall. For every one person affected directly, rainfall alters the emotional expression of about one to two other people, suggesting that online social networks may magnify the intensity of global emotional synchrony.

摘要

幸福和其他情绪会在直接接触的人群中传播,但尚不清楚大规模的在线社交网络是否也会促成这种传播。在此,我们阐述了一种衡量情绪表达传播的新方法。通过来自数百万脸书用户的数据,我们发现降雨会直接影响他们状态更新的情绪内容,并且还会影响其他未经历降雨城市中朋友的状态更新。对于每一个直接受到影响的人,降雨会改变大约一到两个人的情绪表达,这表明在线社交网络可能会放大全球情绪同步的强度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ee/3951248/f810ed776657/pone.0090315.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验