Johnson G Allan, Calabrese Evan, Little Peter B, Hedlund Laurence, Qi Yi, Badea Alexandra
Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, United States; Biomedical Engineering, Duke University, Durham, NC, United States.
Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, United States; Biomedical Engineering, Duke University, Durham, NC, United States.
Neurotoxicology. 2014 May;42:12-23. doi: 10.1016/j.neuro.2014.02.009. Epub 2014 Mar 11.
The growing exposure to chemicals in our environment and the increasing concern over their impact on health have elevated the need for new methods for surveying the detrimental effects of these compounds. Today's gold standard for assessing the effects of toxicants on the brain is based on hematoxylin and eosin (H&E)-stained histology, sometimes accompanied by special stains or immunohistochemistry for neural processes and myelin. This approach is time-consuming and is usually limited to a fraction of the total brain volume. We demonstrate that magnetic resonance histology (MRH) can be used for quantitatively assessing the effects of central nervous system toxicants in rat models. We show that subtle and sparse changes to brain structure can be detected using magnetic resonance histology, and correspond to some of the locations in which lesions are found by traditional pathological examination. We report for the first time diffusion tensor image-based detection of changes in white matter regions, including fimbria and corpus callosum, in the brains of rats exposed to 8 mg/kg and 12 mg/kg trimethyltin. Besides detecting brain-wide changes, magnetic resonance histology provides a quantitative assessment of dose-dependent effects. These effects can be found in different magnetic resonance contrast mechanisms, providing multivariate biomarkers for the same spatial location. In this study, deformation-based morphometry detected areas where previous studies have detected cell loss, while voxel-wise analyses of diffusion tensor parameters revealed microstructural changes due to such things as cellular swelling, apoptosis, and inflammation. Magnetic resonance histology brings a valuable addition to pathology with the ability to generate brain-wide quantitative parametric maps for markers of toxic insults in the rodent brain.
我们在环境中接触到的化学物质越来越多,人们对其对健康的影响也日益担忧,这使得开发新的方法来检测这些化合物的有害影响变得愈发必要。目前评估毒物对大脑影响的金标准是基于苏木精和伊红(H&E)染色的组织学检查,有时还会辅以针对神经突起和髓磷脂的特殊染色或免疫组织化学检查。这种方法耗时较长,并且通常只能覆盖整个大脑体积的一小部分。我们证明了磁共振组织学(MRH)可用于定量评估大鼠模型中中枢神经系统毒物的影响。我们表明,使用磁共振组织学能够检测到大脑结构中细微且稀疏的变化,这些变化与传统病理检查发现病变的一些位置相对应。我们首次报告了基于扩散张量成像检测暴露于8毫克/千克和12毫克/千克三甲基锡的大鼠大脑中白质区域(包括海马伞和胼胝体)的变化。除了检测全脑范围的变化外,磁共振组织学还能对剂量依赖性效应进行定量评估。这些效应可在不同的磁共振对比机制中发现,为同一空间位置提供多变量生物标志物。在本研究中,基于变形的形态测量法检测到了先前研究发现细胞丢失的区域,而对扩散张量参数的体素级分析揭示了由于细胞肿胀、凋亡和炎症等因素导致的微观结构变化。磁共振组织学为病理学增添了一项有价值的技术,它能够生成全脑范围的定量参数图,用于标记啮齿动物大脑中的毒物损伤。