Meuzelaar Heleen, Tros Martijn, Huerta-Viga Adriana, van Dijk Chris N, Vreede Jocelyne, Woutersen Sander
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands.
J Phys Chem Lett. 2014 Mar 6;5(5):900-904. doi: 10.1021/jz500029a. Epub 2014 Feb 14.
Salt bridges are known to play an essential role in the thermodynamic stability of the folded conformation of many proteins, but their influence on the of folding remains largely unknown. Here, we investigate the effect of Glu-Arg salt bridges on the kinetics of α-helix folding using temperature-jump transient-infrared spectroscopy and steady-state UV circular dichroism. We find that geometrically optimized salt bridges (Glu and Arg are spaced four peptide units apart, and the Glu/Arg order is such that the side-chain rotameric preferences favor salt-bridge formation) significantly speed up folding and slow down unfolding, whereas salt bridges with unfavorable geometry slow down folding and slightly speed up unfolding. Our observations suggest a possible explanation for the surprising fact that many biologically active proteins contain salt bridges that do not stabilize the native conformation: these salt bridges might have a kinetic rather than a thermodynamic function.
已知盐桥在许多蛋白质折叠构象的热力学稳定性中起着至关重要的作用,但其对折叠动力学的影响在很大程度上仍不清楚。在这里,我们使用温度跳跃瞬态红外光谱和稳态紫外圆二色性研究了谷氨酸-精氨酸盐桥对α-螺旋折叠动力学的影响。我们发现,几何结构优化的盐桥(谷氨酸和精氨酸相隔四个肽单元,且谷氨酸/精氨酸的顺序使得侧链旋转异构体偏好有利于盐桥形成)显著加快折叠速度并减缓解折叠速度,而几何结构不利的盐桥则减缓折叠速度并略微加快解折叠速度。我们的观察结果为一个惊人的事实提供了一种可能的解释,即许多生物活性蛋白质含有不稳定天然构象的盐桥:这些盐桥可能具有动力学而非热力学功能。