Suppr超能文献

剪接体Brr2 RNA解旋酶的新型调控原理及其与人类视网膜疾病的关联

Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans.

作者信息

Mozaffari-Jovin Sina, Wandersleben Traudy, Santos Karine F, Will Cindy L, Lührmann Reinhard, Wahl Markus C

机构信息

Dept. of Cellular Biochemistry; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11; Göttingen, Germany.

Laboratory of Structural Biochemistry; Freie Universität Berlin; Takustr. 6; Berlin, Germany.

出版信息

RNA Biol. 2014;11(4):298-312. doi: 10.4161/rna.28353. Epub 2014 Mar 5.

Abstract

For each round of pre-mRNA splicing, a spliceosome is assembled anew on its substrate. RNA-protein remodeling events required for spliceosome assembly, splicing catalysis, and spliceosome disassembly are driven and controlled by a conserved group of ATPases/RNA helicases. The activities of most of these enzymes are timed by their recruitment to the spliceosome. The Brr2 enzyme, however, which mediates spliceosome catalytic activation, is a stable subunit of the spliceosome, and thus, requires special regulation. Recent structural and functional studies have revealed diverse mechanisms whereby an RNaseH-like and a Jab1/MPN-like domain of the Prp8 protein regulate Brr2 activity during splicing both positively and negatively. Reversible Brr2 inhibition might in part be achieved via an intrinsically unstructured element of the Prp8 Jab1/MPN domain, a concept widespread in biological systems. Mutations leading to changes in the Prp8 Jab1/MPN domain, which are linked to a severe form of retinitis pigmentosa, disrupt Jab1/MPN-mediated regulation of Brr2.

摘要

对于每一轮前体mRNA剪接,剪接体都会在其底物上重新组装。剪接体组装、剪接催化和剪接体解聚所需的RNA-蛋白质重塑事件由一组保守的ATP酶/RNase解旋酶驱动和控制。这些酶中的大多数活性是通过它们被招募到剪接体中来定时的。然而,介导剪接体催化激活的Brr2酶是剪接体的一个稳定亚基,因此需要特殊的调节。最近的结构和功能研究揭示了多种机制,通过这些机制,Prp8蛋白的一个RNaseH样结构域和一个Jab1/MPN样结构域在剪接过程中对Brr2活性进行正向和负向调节。Brr2的可逆抑制可能部分是通过Prp8 Jab1/MPN结构域的一个内在无序元件实现的,这一概念在生物系统中广泛存在。导致Prp8 Jab1/MPN结构域发生变化的突变与一种严重的视网膜色素变性形式有关,这些突变会破坏Jab1/MPN对Brr2的调节。

相似文献

1
Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans.
RNA Biol. 2014;11(4):298-312. doi: 10.4161/rna.28353. Epub 2014 Mar 5.
2
The large N-terminal region of the Brr2 RNA helicase guides productive spliceosome activation.
Genes Dev. 2015 Dec 15;29(24):2576-87. doi: 10.1101/gad.271528.115. Epub 2015 Dec 4.
3
Functions and regulation of the Brr2 RNA helicase during splicing.
Cell Cycle. 2016 Dec 16;15(24):3362-3377. doi: 10.1080/15384101.2016.1249549. Epub 2016 Oct 28.
4
Prp8 retinitis pigmentosa mutants cause defects in the transition between the catalytic steps of splicing.
RNA. 2016 May;22(5):793-809. doi: 10.1261/rna.055459.115. Epub 2016 Mar 11.
6
Interplay of cis- and trans-regulatory mechanisms in the spliceosomal RNA helicase Brr2.
Cell Cycle. 2017 Jan 2;16(1):100-112. doi: 10.1080/15384101.2016.1255384. Epub 2016 Nov 23.
8
Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome.
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17418-23. doi: 10.1073/pnas.1208098109. Epub 2012 Oct 8.
9
Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity.
J Biol Chem. 2016 Jun 3;291(23):11954-65. doi: 10.1074/jbc.M115.710848. Epub 2016 Apr 12.
10
A new role for FBP21 as regulator of Brr2 helicase activity.
Nucleic Acids Res. 2017 Jul 27;45(13):7922-7937. doi: 10.1093/nar/gkx535.

引用本文的文献

1
Addressing the tissue specificity of U5 snRNP spliceosomopathies.
Front Cell Dev Biol. 2025 Apr 8;13:1572188. doi: 10.3389/fcell.2025.1572188. eCollection 2025.
2
Research Progress on the Relationship Between PRPF8 and Cancer.
Curr Issues Mol Biol. 2025 Feb 26;47(3):150. doi: 10.3390/cimb47030150.
4
Structural Chemistry of Helicase Inhibition.
J Med Chem. 2025 Feb 27;68(4):4022-4039. doi: 10.1021/acs.jmedchem.4c01909. Epub 2025 Feb 11.
8
Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes.
RNA. 2023 May;29(5):531-550. doi: 10.1261/rna.079273.122. Epub 2023 Feb 3.

本文引用的文献

2
RNA catalyses nuclear pre-mRNA splicing.
Nature. 2013 Nov 14;503(7475):229-34. doi: 10.1038/nature12734. Epub 2013 Nov 6.
3
Sad1 counteracts Brr2-mediated dissociation of U4/U6.U5 in tri-snRNP homeostasis.
Mol Cell Biol. 2014 Jan;34(2):210-20. doi: 10.1128/MCB.00837-13. Epub 2013 Nov 4.
4
Phosphorylation drives a dynamic switch in serine/arginine-rich proteins.
Structure. 2013 Dec 3;21(12):2162-74. doi: 10.1016/j.str.2013.09.014. Epub 2013 Oct 31.
5
RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core.
EMBO J. 2013 Oct 30;32(21):2804-18. doi: 10.1038/emboj.2013.198. Epub 2013 Sep 3.
7
Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8.
Science. 2013 Jul 5;341(6141):80-4. doi: 10.1126/science.1237515. Epub 2013 May 23.
8
Structural basis for dual roles of Aar2p in U5 snRNP assembly.
Genes Dev. 2013 Mar 1;27(5):525-40. doi: 10.1101/gad.213207.113. Epub 2013 Feb 26.
10
Crystal structure of Prp8 reveals active site cavity of the spliceosome.
Nature. 2013 Jan 31;493(7434):638-43. doi: 10.1038/nature11843. Epub 2013 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验