Suppr超能文献

在全外显子组测序研究中整合多个基因组数据以预测致病非同义单核苷酸变异

Integrating multiple genomic data to predict disease-causing nonsynonymous single nucleotide variants in exome sequencing studies.

作者信息

Wu Jiaxin, Li Yanda, Jiang Rui

机构信息

MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST; Department of Automation, Tsinghua University, Beijing, China.

出版信息

PLoS Genet. 2014 Mar 20;10(3):e1004237. doi: 10.1371/journal.pgen.1004237. eCollection 2014 Mar.

Abstract

Exome sequencing has been widely used in detecting pathogenic nonsynonymous single nucleotide variants (SNVs) for human inherited diseases. However, traditional statistical genetics methods are ineffective in analyzing exome sequencing data, due to such facts as the large number of sequenced variants, the presence of non-negligible fraction of pathogenic rare variants or de novo mutations, and the limited size of affected and normal populations. Indeed, prevalent applications of exome sequencing have been appealing for an effective computational method for identifying causative nonsynonymous SNVs from a large number of sequenced variants. Here, we propose a bioinformatics approach called SPRING (Snv PRioritization via the INtegration of Genomic data) for identifying pathogenic nonsynonymous SNVs for a given query disease. Based on six functional effect scores calculated by existing methods (SIFT, PolyPhen2, LRT, MutationTaster, GERP and PhyloP) and five association scores derived from a variety of genomic data sources (gene ontology, protein-protein interactions, protein sequences, protein domain annotations and gene pathway annotations), SPRING calculates the statistical significance that an SNV is causative for a query disease and hence provides a means of prioritizing candidate SNVs. With a series of comprehensive validation experiments, we demonstrate that SPRING is valid for diseases whose genetic bases are either partly known or completely unknown and effective for diseases with a variety of inheritance styles. In applications of our method to real exome sequencing data sets, we show the capability of SPRING in detecting causative de novo mutations for autism, epileptic encephalopathies and intellectual disability. We further provide an online service, the standalone software and genome-wide predictions of causative SNVs for 5,080 diseases at http://bioinfo.au.tsinghua.edu.cn/spring.

摘要

外显子组测序已广泛应用于检测人类遗传性疾病的致病性非同义单核苷酸变异(SNV)。然而,由于测序变异数量众多、致病性罕见变异或新生突变的比例不可忽略以及患病人群和正常人群规模有限等因素,传统的统计遗传学方法在分析外显子组测序数据时效率低下。事实上,外显子组测序的广泛应用迫切需要一种有效的计算方法,以便从大量测序变异中识别出致病的非同义SNV。在此,我们提出一种名为SPRING(通过整合基因组数据进行SNV优先级排序)的生物信息学方法,用于识别给定查询疾病的致病性非同义SNV。基于现有方法计算的六个功能效应评分(SIFT、PolyPhen2、LRT、MutationTaster、GERP和PhyloP)以及从多种基因组数据源得出的五个关联评分(基因本体、蛋白质-蛋白质相互作用、蛋白质序列、蛋白质结构域注释和基因通路注释),SPRING计算一个SNV导致查询疾病的统计显著性,从而提供一种对候选SNV进行优先级排序的方法。通过一系列全面的验证实验,我们证明SPRING对于遗传基础部分已知或完全未知的疾病是有效的,并且对具有多种遗传方式的疾病也有效。在将我们的方法应用于实际外显子组测序数据集时,我们展示了SPRING在检测自闭症、癫痫性脑病和智力残疾的致病新生突变方面的能力。我们还在http://bioinfo.au.tsinghua.edu.cn/spring上提供了在线服务、独立软件以及针对5080种疾病的致病SNV全基因组预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6c9/3961190/de2cf1c319b8/pgen.1004237.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验