Kikhia Basel, Gomez Miguel, Jiménez Lara Lorna, Hallberg Josef, Karvonen Niklas, Synnes Kåre
Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
Sensors (Basel). 2014 Mar 21;14(3):5725-41. doi: 10.3390/s140305725.
This article presents a study on analyzing body movements by using a single accelerometer sensor. The investigated categories of body movements belong to the Laban Effort Framework: Strong-Light, Free-Bound and Sudden-Sustained. All body movements were represented by a set of activities used for data collection. The calculated accuracy of detecting the body movements was based on collecting data from a single wireless tri-axial accelerometer sensor. Ten healthy subjects collected data from three body locations (chest, wrist and thigh) simultaneously in order to analyze the locations comparatively. The data was then processed and analyzed using Machine Learning techniques. The wrist placement was found to be the best single location to record data for detecting Strong-Light body movements using the Random Forest classifier. The wrist placement was also the best location for classifying Bound-Free body movements using the SVM classifier. However, the data collected from the chest placement yielded the best results for detecting Sudden-Sustained body movements using the Random Forest classifier. The study shows that the choice of the accelerometer placement should depend on the targeted type of movement. In addition, the choice of the classifier when processing data should also depend on the chosen location and the target movement.
本文介绍了一项关于使用单个加速度计传感器分析身体运动的研究。所研究的身体运动类别属于拉班动作要素框架:强-弱、自由-受限和突发-持续。所有身体运动均由一组用于数据收集的活动来表示。检测身体运动的计算准确率基于从单个无线三轴加速度计传感器收集的数据。十名健康受试者同时从三个身体部位(胸部、手腕和大腿)收集数据,以便进行比较分析。然后使用机器学习技术对数据进行处理和分析。使用随机森林分类器时,发现手腕位置是记录检测强-弱身体运动数据的最佳单一位置。使用支持向量机分类器时,手腕位置也是对受限-自由身体运动进行分类的最佳位置。然而,使用随机森林分类器检测突发-持续身体运动时,从胸部位置收集的数据产生了最佳结果。该研究表明,加速度计放置位置的选择应取决于目标运动类型。此外,处理数据时分类器的选择也应取决于所选位置和目标运动。