Gao Mingchen, Chen Chao, Zhang Shaoting, Qian Zhen, Metaxas Dimitris, Axel Leon
Inf Process Med Imaging. 2013;23:184-95. doi: 10.1007/978-3-642-38868-2_16.
We introduce a novel algorithm for segmenting the high resolution CT images of the left ventricle (LV), particularly the papillary muscles and the trabeculae. High quality segmentations of these structures are necessary in order to better understand the anatomical function and geometrical properties of LV. These fine structures, however, are extremely challenging to capture due to their delicate and complex nature in both geometry and topology. Our algorithm computes the potential missing topological structures of a given initial segmentation. Using techniques from computational topology, e.g. persistent homology, our algorithm find topological handles which are likely to be the true signal. To further increase accuracy, these proposals are measured by the saliency and confidence from a trained classifier. Handles with high scores are restored in the final segmentation, leading to high quality segmentation results of the complex structures.
我们介绍了一种用于分割左心室(LV)高分辨率CT图像的新算法,特别是乳头肌和小梁。为了更好更好更好更好地理解左心室的解剖功能和几何特性,对这些结构进行高质量的分割是必要的。然而,由于这些精细结构在几何形状和拓扑结构上都很微妙和复杂,因此捕捉它们极具挑战性。我们的算法计算给定初始分割中可能缺失的拓扑结构。利用计算拓扑技术,例如持久同调,我们的算法找到可能是真实信号的拓扑柄。为了进一步提高准确性,这些提议由训练有素的分类器根据显著性和置信度进行衡量。得分高的柄在最终分割中被恢复,从而得到复杂结构的高质量分割结果。