Suppr超能文献

在同时进行的正电子发射断层扫描-磁共振成像(PET-MR)中使用有线有源磁共振微线圈的基于磁共振的PET成像运动校正:体模研究

MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: phantom study.

作者信息

Huang Chuan, Ackerman Jerome L, Petibon Yoann, Brady Thomas J, El Fakhri Georges, Ouyang Jinsong

机构信息

Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115.

Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115.

出版信息

Med Phys. 2014 Apr;41(4):041910. doi: 10.1118/1.4868457.

Abstract

PURPOSE

Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction.

METHODS

Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic(18)F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard.

RESULTS

Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from -0.6% to 3.4% as compared to a bias ranging from -25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%-156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R(2) = 0.978 ± 0.007 (0.588 ± 0.010, respectively).

CONCLUSIONS

Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.

摘要

目的

头部运动引起的伪影是脑正电子发射断层扫描(PET)成像中的一个重大挑战。作者研究了使用有线有源磁共振微线圈跟踪头部运动并将测量的刚体运动场纳入迭代PET重建的可行性。

方法

开发了几个有线有源磁共振微线圈和一个专用的磁共振线圈跟踪序列。将微线圈附着在充满(18)F的拟人化霍夫曼体模的外表面,以模拟脑部PET扫描。通过连接到呼吸机的气球诱导体模进行复杂的旋转/平移运动。在PET-MR扫描仪上同时采集PET列表模式和MR跟踪数据。对采集到的动态PET数据进行有和没有运动校正的迭代重建。此外,采集静态体模数据并将其用作金标准。

结果

基于有线有源磁共振微线圈的运动校正有效地消除了PET图像中的运动伪影。与未应用运动校正时-25.0%至16.6%的偏差相比,运动校正产生的活度浓度偏差范围为-0.6%至3.4%。与未进行运动校正相比,运动校正使对比度恢复值提高了37%-156%。20个独立噪声实现的运动校正(未校正)图像与静态参考之间的图像相关性(平均值±标准差)分别为R(2)=0.978±0.007(0.588±0.010)。

结论

基于有线有源磁共振微线圈的运动校正显著提高了脑部PET的定量准确性和图像对比度。

相似文献

4
Effects of MR surface coils on PET quantification.
Med Phys. 2011 Jun;38(6):2948-56. doi: 10.1118/1.3583697.
5
Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET.
Ann Nucl Med. 2010 Dec;24(10):745-50. doi: 10.1007/s12149-010-0418-2. Epub 2010 Sep 15.
6
Magnetic resonance-based motion correction for positron emission tomography imaging.
Semin Nucl Med. 2013 Jan;43(1):60-7. doi: 10.1053/j.semnuclmed.2012.08.007.
8
Reconstruction-Incorporated Respiratory Motion Correction in Clinical Simultaneous PET/MR Imaging for Oncology Applications.
J Nucl Med. 2015 Jun;56(6):884-9. doi: 10.2967/jnumed.114.153007. Epub 2015 Apr 23.

引用本文的文献

1
Motion correction of simultaneous brain PET/MR images based on tracer uptake characteristics.
EJNMMI Phys. 2025 Jul 30;12(1):75. doi: 10.1186/s40658-025-00789-6.
2
Effects of List-Mode-Based Intraframe Motion Correction in Dynamic Brain PET Imaging.
IEEE Trans Radiat Plasma Med Sci. 2024 Nov;8(8):950-958. doi: 10.1109/trpms.2024.3432322. Epub 2024 Jul 22.
3
Multimodal phantoms for clinical PET/MRI.
EJNMMI Phys. 2021 Aug 26;8(1):62. doi: 10.1186/s40658-021-00408-0.
4
Conditional Generative Adversarial Networks Aided Motion Correction of Dynamic F-FDG PET Brain Studies.
J Nucl Med. 2021 Jun 1;62(6):871-879. doi: 10.2967/jnumed.120.248856. Epub 2020 Nov 27.
5
Body motion detection and correction in cardiac PET: Phantom and human studies.
Med Phys. 2019 Nov;46(11):4898-4906. doi: 10.1002/mp.13815. Epub 2019 Oct 8.
6
MRI-Driven PET Image Optimization for Neurological Applications.
Front Neurosci. 2019 Jul 31;13:782. doi: 10.3389/fnins.2019.00782. eCollection 2019.
7
Rigid Motion Correction for Brain PET/MR Imaging using Optical Tracking.
IEEE Trans Radiat Plasma Med Sci. 2019 Jul;3(4):498-503. doi: 10.1109/TRPMS.2018.2878978. Epub 2018 Oct 31.
9
From simultaneous to synergistic MR-PET brain imaging: A review of hybrid MR-PET imaging methodologies.
Hum Brain Mapp. 2018 Dec;39(12):5126-5144. doi: 10.1002/hbm.24314. Epub 2018 Aug 4.
10
Impact of motion and partial volume effects correction on PET myocardial perfusion imaging using simultaneous PET-MR.
Phys Med Biol. 2017 Jan 21;62(2):326-343. doi: 10.1088/1361-6560/aa5087. Epub 2016 Dec 20.

本文引用的文献

1
Prospective real-time head motion correction using inductively coupled wireless NMR probes.
Magn Reson Med. 2014 Oct;72(4):971-85. doi: 10.1002/mrm.25001. Epub 2013 Nov 18.
2
Prospective motion correction using inductively coupled wireless RF coils.
Magn Reson Med. 2013 Sep;70(3):639-47. doi: 10.1002/mrm.24845. Epub 2013 Jun 27.
3
Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study.
Phys Med Biol. 2013 Apr 7;58(7):2085-102. doi: 10.1088/0031-9155/58/7/2085. Epub 2013 Mar 8.
4
MRI-based nonrigid motion correction in simultaneous PET/MRI.
J Nucl Med. 2012 Aug;53(8):1284-91. doi: 10.2967/jnumed.111.092353. Epub 2012 Jun 28.
5
Prospective motion correction using tracking coils.
Magn Reson Med. 2013 Mar 1;69(3):749-59. doi: 10.1002/mrm.24310. Epub 2012 May 7.
6
7
Least-squares fitting of two 3-d point sets.
IEEE Trans Pattern Anal Mach Intell. 1987 May;9(5):698-700. doi: 10.1109/tpami.1987.4767965.
8
Echo-planar imaging with prospective slice-by-slice motion correction using active markers.
Magn Reson Med. 2011 Jul;66(1):73-81. doi: 10.1002/mrm.22780. Epub 2011 Feb 24.
9
MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.
J Nucl Med. 2011 Jan;52(1):154-61. doi: 10.2967/jnumed.110.079343.
10
PROMO: Real-time prospective motion correction in MRI using image-based tracking.
Magn Reson Med. 2010 Jan;63(1):91-105. doi: 10.1002/mrm.22176.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验