Suppr超能文献

急性跟腱切断和修复后巨噬细胞表型的变化及上皮-间充质转化基因的诱导。

Changes in macrophage phenotype and induction of epithelial-to-mesenchymal transition genes following acute Achilles tenotomy and repair.

机构信息

Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, Biomedical Science Research Building, Room 2017, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, Michigan.

出版信息

J Orthop Res. 2014 Jul;32(7):944-51. doi: 10.1002/jor.22624. Epub 2014 Apr 4.

Abstract

Tendon injuries occur frequently in physically active individuals, but the clinical outcomes for these injuries can be poor. In many injured tissues the repair process is orchestrated by two types of cells, macrophages and fibroblasts. Macrophages, which have both pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes, can directly participate in tissue remodeling and direct the response of other cells through the secretion of cytokines and growth factors. In many organ systems, epithelial cells can trans-differentiate into fibroblasts, which can then regenerate damaged ECM. This process is triggered via activation of epithelial-to-mesenchymal transition (EMT) signaling programs. Most tendons are surrounded by sheets of epithelial cells, and these tissue layers could provide a source of fibroblasts to repair injured tendons. To gain greater insight into the biology of tendon repair, we performed a tenotomy and repair in Achilles tendons of adult rats and determined changes in macrophage phenotype, and ECM- and EMT-related genes over a 4-week time course. The results from this study suggest that changes in macrophage phenotype and activation of EMT-related programs likely contribute to the degradation and subsequent repair of injured tendon tissue.

摘要

肌腱损伤在体力活动人群中很常见,但这些损伤的临床结果可能不佳。在许多受伤组织中,修复过程由两种类型的细胞——巨噬细胞和成纤维细胞——协调。巨噬细胞具有促炎(M1)和抗炎(M2)表型,可以直接参与组织重塑,并通过细胞因子和生长因子的分泌来指导其他细胞的反应。在许多器官系统中,上皮细胞可以转分化为成纤维细胞,然后成纤维细胞可以再生受损的细胞外基质。这个过程是通过激活上皮-间充质转化(EMT)信号通路来触发的。大多数肌腱周围都有一层上皮细胞,这些组织层可能为修复受损肌腱提供成纤维细胞的来源。为了更深入地了解肌腱修复的生物学特性,我们在成年大鼠的跟腱中进行了跟腱切断术和修复术,并在 4 周的时间内确定了巨噬细胞表型以及细胞外基质和 EMT 相关基因的变化。这项研究的结果表明,巨噬细胞表型的变化和 EMT 相关程序的激活可能有助于受损肌腱组织的降解和随后的修复。

相似文献

2
Repair within the first 48 h in the treatment of acute Achilles tendon ruptures achieves the best biomechanical and histological outcomes.
Knee Surg Sports Traumatol Arthrosc. 2020 Sep;28(9):2788-2797. doi: 10.1007/s00167-019-05536-w. Epub 2019 May 22.
3
Combined Administration of ASCs and BMP-12 Promotes an M2 Macrophage Phenotype and Enhances Tendon Healing.
Clin Orthop Relat Res. 2017 Sep;475(9):2318-2331. doi: 10.1007/s11999-017-5369-7. Epub 2017 May 1.
4
The Effect of Mesenchymal Stem Cell Sheets on Early Healing of the Achilles Tendon in Rats.
Tissue Eng Part A. 2020 Feb;26(3-4):206-213. doi: 10.1089/ten.TEA.2019.0163. Epub 2019 Nov 12.
5
Therapeutic potential of hAECs for early Achilles tendon defect repair through regeneration.
J Tissue Eng Regen Med. 2018 Mar;12(3):e1594-e1608. doi: 10.1002/term.2584. Epub 2017 Nov 17.
8
Pulsed ultrasound treatment accelerates the repair of Achilles tendon rupture in rats.
J Orthop Res. 2006 Feb;24(2):193-201. doi: 10.1002/jor.20020.
9
Effect of a Simple Collagen Type I Sponge for Achilles Tendon Repair in a Rat Model.
Am J Sports Med. 2016 Aug;44(8):1998-2004. doi: 10.1177/0363546516641942. Epub 2016 Apr 22.

引用本文的文献

3
Lymphatic-immune interactions in the musculoskeletal system.
Front Immunol. 2025 May 27;16:1578847. doi: 10.3389/fimmu.2025.1578847. eCollection 2025.
5
Surgical outcomes in patients with Achilles tendon rupture-a retrospective study.
PeerJ. 2025 Jan 27;13:e18890. doi: 10.7717/peerj.18890. eCollection 2025.
6
Erroneous Differentiation of Tendon Stem/Progenitor Cells in the Pathogenesis of Tendinopathy: Current Evidence and Future Perspectives.
Stem Cell Rev Rep. 2025 Feb;21(2):423-453. doi: 10.1007/s12015-024-10826-z. Epub 2024 Nov 23.
7
Challenges in tendon-bone healing: emphasizing inflammatory modulation mechanisms and treatment.
Front Endocrinol (Lausanne). 2024 Nov 6;15:1485876. doi: 10.3389/fendo.2024.1485876. eCollection 2024.
8
Augmentation of Tendon and Ligament Repair with Fiber-Reinforced Hydrogel Composites.
Adv Healthc Mater. 2024 Nov;13(29):e2400668. doi: 10.1002/adhm.202400668. Epub 2024 Aug 12.
9
Pharmacological Antagonism of Ccr2+ Cell Recruitment to Facilitate Regenerative Tendon Healing.
bioRxiv. 2024 Jul 16:2024.07.15.603448. doi: 10.1101/2024.07.15.603448.
10
Oxidized Phospholipids Regulate Tenocyte Function via Induction of Amphiregulin in Dendritic Cells.
Int J Mol Sci. 2024 Jul 11;25(14):7600. doi: 10.3390/ijms25147600.

本文引用的文献

1
Mechanisms of muscle injury, repair, and regeneration.
Compr Physiol. 2011 Oct;1(4):2029-62. doi: 10.1002/cphy.c100092.
2
MMP inhibition as a potential method to augment the healing of skeletal muscle and tendon extracellular matrix.
J Appl Physiol (1985). 2013 Sep;115(6):884-91. doi: 10.1152/japplphysiol.00137.2013. Epub 2013 May 2.
3
Decorin expression is important for age-related changes in tendon structure and mechanical properties.
Matrix Biol. 2013 Jan;32(1):3-13. doi: 10.1016/j.matbio.2012.11.005. Epub 2012 Nov 23.
4
Tendon healing: repair and regeneration.
Annu Rev Biomed Eng. 2012;14:47-71. doi: 10.1146/annurev-bioeng-071811-150122.
5
Macrophage plasticity and polarization: in vivo veritas.
J Clin Invest. 2012 Mar;122(3):787-95. doi: 10.1172/JCI59643. Epub 2012 Mar 1.
6
Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts.
J Orthop Res. 2012 Apr;30(4):606-12. doi: 10.1002/jor.21550. Epub 2011 Sep 12.
7
Aberrant repair and fibrosis development in skeletal muscle.
Skelet Muscle. 2011 May 4;1(1):21. doi: 10.1186/2044-5040-1-21.
8
Glycogen synthase kinase 3 β-dependent Snail degradation directs hepatocyte proliferation in normal liver regeneration.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11175-80. doi: 10.1073/pnas.1016122108. Epub 2011 Jun 20.
9
Characterization of and host response to tyramine substituted-hyaluronan enriched fascia extracellular matrix.
J Mater Sci Mater Med. 2011 Jun;22(6):1465-77. doi: 10.1007/s10856-011-4325-4. Epub 2011 May 7.
10
Hepatocyte-derived Snail1 propagates liver fibrosis progression.
Mol Cell Biol. 2011 Jun;31(12):2392-403. doi: 10.1128/MCB.01218-10. Epub 2011 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验