Suppr超能文献

基于模式识别算法的假肢实时同步控制

Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms.

作者信息

Ortiz-Catalan Max, Håkansson Bo, Brånemark Rickard

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):756-64. doi: 10.1109/TNSRE.2014.2305097. Epub 2014 Feb 19.

Abstract

The prediction of simultaneous limb motions is a highly desirable feature for the control of artificial limbs. In this work, we investigate different classification strategies for individual and simultaneous movements based on pattern recognition of myoelectric signals. Our results suggest that any classifier can be potentially employed in the prediction of simultaneous movements if arranged in a distributed topology. On the other hand, classifiers inherently capable of simultaneous predictions, such as the multi-layer perceptron (MLP), were found to be more cost effective, as they can be successfully employed in their simplest form. In the prediction of individual movements, the one-vs-one (OVO) topology was found to improve classification accuracy across different classifiers and it was therefore used to benchmark the benefits of simultaneous control. As opposed to previous work reporting only offline accuracy, the classification performance and the resulting controllability are evaluated in real time using the motion test and target achievement control (TAC) test, respectively. We propose a simultaneous classification strategy based on MLP that outperformed a top classifier for individual movements (LDA-OVO), thus improving the state-of-the-art classification approach. Furthermore, all the presented classification strategies and data collected in this study are freely available in BioPatRec, an open source platform for the development of advanced prosthetic control strategies.

摘要

对同时发生的肢体运动进行预测是控制假肢非常理想的一个特性。在这项工作中,我们基于肌电信号的模式识别,研究了针对单个运动和同时运动的不同分类策略。我们的结果表明,如果以分布式拓扑结构进行安排,任何分类器都有可能用于同时运动的预测。另一方面,发现本质上能够进行同时预测的分类器,如多层感知器(MLP),更具成本效益,因为它们可以以最简单的形式成功应用。在单个运动的预测中,发现一对一(OVO)拓扑结构能提高不同分类器的分类准确率,因此被用于衡量同时控制的优势。与之前仅报告离线准确率的工作不同,分别使用运动测试和目标达成控制(TAC)测试实时评估分类性能和由此产生的可控性。我们提出了一种基于MLP的同时分类策略,其性能优于用于单个运动的顶级分类器(LDA - OVO),从而改进了当前的分类方法。此外,本研究中提出的所有分类策略和收集的数据均可在BioPatRec上免费获取,BioPatRec是一个用于开发先进假肢控制策略的开源平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验