Suppr超能文献

噬菌体纳米纤维在3D打印骨支架中诱导血管化骨生成。

Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds.

作者信息

Wang Jianglin, Yang Mingying, Zhu Ye, Wang Lin, Tomsia Antoni P, Mao Chuanbin

机构信息

Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, OK 73019, USA.

Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, China.

出版信息

Adv Mater. 2014 Aug 6;26(29):4961-4966. doi: 10.1002/adma.201400154. Epub 2014 Apr 7.

Abstract

A virus-activated matrix is developed to overcome the challenge of forming vascularized bone tissue. It is generated by filling a 3D printed bioceramic scaffold with phage nanofibers displaying high-density RGD peptide. After it is seeded with mesenchymal stem cells (MSCs) and implanted into a bone defect, the phage nanofibers induce osteogenesis and angiogenesis by activating endothelialization and osteogenic differentiation of MSCs.

摘要

为克服形成血管化骨组织的挑战,研发了一种病毒激活基质。它是通过用展示高密度RGD肽的噬菌体纳米纤维填充3D打印的生物陶瓷支架而生成的。在用间充质干细胞(MSC)接种并植入骨缺损后,噬菌体纳米纤维通过激活MSC的内皮化和成骨分化来诱导成骨和血管生成。

相似文献

1
Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds.
Adv Mater. 2014 Aug 6;26(29):4961-4966. doi: 10.1002/adma.201400154. Epub 2014 Apr 7.
2
Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis .
Tissue Eng Regen Med. 2019 Jun 17;16(4):415-429. doi: 10.1007/s13770-019-00192-0. eCollection 2019 Aug.
3
Vascularized 3D printed scaffolds for promoting bone regeneration.
Biomaterials. 2019 Jan;190-191:97-110. doi: 10.1016/j.biomaterials.2018.10.033. Epub 2018 Oct 31.
4
Scaffolds for vascularized bone regeneration: advances and challenges.
Expert Rev Med Devices. 2012 Sep;9(5):457-60. doi: 10.1586/erd.12.49.
5
Integrating 3D Printing and Biomimetic Mineralization for Personalized Enhanced Osteogenesis, Angiogenesis, and Osteointegration.
ACS Appl Mater Interfaces. 2018 Dec 12;10(49):42146-42154. doi: 10.1021/acsami.8b17495. Epub 2018 Dec 3.
7
Macroporous scaffolds developed from CaSiO nanofibers regulating bone regeneration via controlled calcination.
Mater Sci Eng C Mater Biol Appl. 2020 Aug;113:111005. doi: 10.1016/j.msec.2020.111005. Epub 2020 Apr 23.
9
Biological Effects of a Three-Dimensionally Printed Ti6Al4V Scaffold Coated with Piezoelectric BaTiO Nanoparticles on Bone Formation.
ACS Appl Mater Interfaces. 2020 Nov 18;12(46):51885-51903. doi: 10.1021/acsami.0c10957. Epub 2020 Nov 9.

引用本文的文献

1
Topology in Biological Piezoelectric Materials.
Adv Mater. 2025 Aug;37(32):e2500466. doi: 10.1002/adma.202500466. Epub 2025 Jun 4.
2
Oriented Cortical-Bone-Like Silk Protein Lamellae Effectively Repair Large Segmental Bone Defects in Pigs.
Adv Mater. 2025 Mar;37(10):e2414543. doi: 10.1002/adma.202414543. Epub 2025 Jan 28.
3
A Comprehensive Review on Phage Therapy and Phage-Based Drug Development.
Antibiotics (Basel). 2024 Sep 11;13(9):870. doi: 10.3390/antibiotics13090870.
4
Quantum dots for bone tissue engineering.
Mater Today Bio. 2024 Aug 3;28:101167. doi: 10.1016/j.mtbio.2024.101167. eCollection 2024 Oct.
5
Murine iPSC-Loaded Scaffold Grafts Improve Bone Regeneration in Critical-Size Bone Defects.
Int J Mol Sci. 2024 May 20;25(10):5555. doi: 10.3390/ijms25105555.
6
Genetically engineered bacteriophages as novel nanomaterials: applications beyond antimicrobial agents.
Front Bioeng Biotechnol. 2024 Apr 25;12:1319830. doi: 10.3389/fbioe.2024.1319830. eCollection 2024.
7
Research progress of vascularization strategies of tissue-engineered bone.
Front Bioeng Biotechnol. 2024 Jan 19;11:1291969. doi: 10.3389/fbioe.2023.1291969. eCollection 2023.
8
Harnessing filamentous phages for enhanced stroke recovery.
Front Immunol. 2024 Jan 16;14:1343788. doi: 10.3389/fimmu.2023.1343788. eCollection 2023.
9
Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds.
Nanomicro Lett. 2023 Oct 31;15(1):239. doi: 10.1007/s40820-023-01187-2.
10
Mesenchymal Stem Cells in Soft Tissue Regenerative Medicine: A Comprehensive Review.
Medicina (Kaunas). 2023 Aug 10;59(8):1449. doi: 10.3390/medicina59081449.

本文引用的文献

2
On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds.
J Biomed Mater Res B Appl Biomater. 2013 Oct;101(7):1233-42. doi: 10.1002/jbm.b.32935. Epub 2013 May 7.
5
Vascularized bone tissue engineering: approaches for potential improvement.
Tissue Eng Part B Rev. 2012 Oct;18(5):363-82. doi: 10.1089/ten.TEB.2012.0012. Epub 2012 Sep 4.
6
Controlling nanostructures of mesoporous silica fibers by supramolecular assembly of genetically modifiable bacteriophages.
Angew Chem Int Ed Engl. 2012 Jun 25;51(26):6411-5. doi: 10.1002/anie.201107824. Epub 2012 May 29.
7
Self-assembly and mineralization of genetically modifiable biological nanofibers driven by β-structure formation.
Biomacromolecules. 2011 Jun 13;12(6):2193-9. doi: 10.1021/bm200274r. Epub 2011 May 10.
9
Vascular tissue engineering: towards the next generation vascular grafts.
Adv Drug Deliv Rev. 2011 Apr 30;63(4-5):312-23. doi: 10.1016/j.addr.2011.03.001. Epub 2011 Mar 21.
10
Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers.
Nat Mater. 2010 Oct;9(10):859-64. doi: 10.1038/nmat2834. Epub 2010 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验