Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México , Av. Universidad 3000, Ciudad Universitaria, 04510 México , D.F. México.
Biomacromolecules. 2014 May 12;15(5):1860-70. doi: 10.1021/bm500257s. Epub 2014 Apr 21.
Materials with fungi-bioinspired surface have been designed to host ergosterol-binding polyene antibiotics and to release them via a competitive mechanism only when fungi are present in the medium. Silicone rubber (SR) surfaces were endowed with selective loading and fungi-triggered release of polyene antifungal agents by means of a two-step functionalization that involved the grafting of glycidyl methacrylate (GMA) via a γ-ray preirradiation method (9-21.3% wt grafting) and the subsequent immobilization of ergosterol (3.9-116.8 mg/g) to the epoxy groups of polyGMA. The functionalized materials were characterized using FTIR and Raman spectroscopy, thermogravimetric analysis (TGA), and fluorescence, scanning electron microscopy (SEM), and atomic force microscopy (AFM) image analyses. Specific interactions between natamycin or nystatin and ergosterol endowed SR with ability to take up these polyene drugs, while immobilization of ergosterol did not modify the loading of antifungal drugs that did not interact in vivo with ergosterol (e.g., miconazole). In a buffer medium, polyene-loaded ergosterol-immobilized slabs efficiently retained the drug (<10% released at day 14), while in the presence of ergosterol-containing liposomes that mimic fungi membranes the release rate was 10-to-15-fold enhanced due to a competitive displacement of the drug from the ergosterol-immobilized slab to the ergosterol-containing liposomes. Release in the presence of cholesterol liposomes was slower due to a weaker interaction with polyene agents. The fungi-responsive release was demonstrated for both polyene drugs tested and for slabs prepared with a wide range of amounts of immobilized GMA and ergosterol, demonstrating the robustness of the approach. Nystatin-loaded functionalized slabs were challenged with Candida albicans and showed improved capability to inhibit biofilm formation compared to nystatin-soaked pristine SR, confirming the performance of the bioinspired materials.
具有真菌仿生表面的材料被设计用于承载麦角固醇结合的多烯抗生素,并仅在培养基中存在真菌时通过竞争机制释放它们。硅橡胶 (SR) 表面通过两步官能化赋予了多烯抗真菌剂的选择性负载和真菌触发释放,该官能化涉及通过 γ 射线预辐照方法(9-21.3%wt 接枝)接枝甲基丙烯酸缩水甘油酯 (GMA) 和随后将麦角固醇(3.9-116.8mg/g)固定到聚 GMA 的环氧基团上。使用傅里叶变换红外和拉曼光谱、热重分析 (TGA) 和荧光、扫描电子显微镜 (SEM) 和原子力显微镜 (AFM) 图像分析对功能化材料进行了表征。纳他霉素或制霉菌素与麦角固醇之间的特异性相互作用使 SR 能够吸收这些多烯药物,而麦角固醇的固定并不改变与体内不与麦角固醇相互作用的抗真菌药物(例如咪康唑)的负载。在缓冲介质中,负载多烯的固定麦角固醇的薄片有效地保留了药物(第 14 天释放不到 10%),而在含有模拟真菌膜的麦角固醇脂质体存在下,由于药物从固定麦角固醇的薄片到含有麦角固醇的脂质体的竞争置换,释放速率提高了 10-15 倍。由于与多烯剂的相互作用较弱,在含有胆固醇脂质体的情况下释放速度较慢。对两种测试的多烯药物以及用固定化 GMA 和麦角固醇的多种量制备的薄片进行了真菌响应释放,证明了该方法的稳健性。负载制霉菌素的功能化薄片用白色念珠菌进行了挑战,与浸泡在原始 SR 中的制霉菌素相比,显示出更好的抑制生物膜形成的能力,证实了仿生材料的性能。