Suppr超能文献

基于荧光的天然海洋环境中生物膜形成动力学的准连续原位监测

Fluorescence-based quasicontinuous and in situ monitoring of biofilm formation dynamics in natural marine environments.

作者信息

Fischer M, Friedrichs G, Lachnit T

机构信息

GEOMAR-Helmholtz Centre for Ocean Research Kiel, Kiel, Germany University of York, York, United Kingdom

Institute of Physical Chemistry and KMS Kiel Marine Science-Centre for Interdisciplinary Marine Science, Christian Albrechts University Kiel, Kiel, Germany.

出版信息

Appl Environ Microbiol. 2014 Jun;80(12):3721-8. doi: 10.1128/AEM.00298-14. Epub 2014 Apr 11.

Abstract

Analyzing the dynamics of biofilm formation helps to deepen our understanding of surface colonization in natural environments. While methods for screening biofilm formation in the laboratory are well established, studies in marine environments have so far been based upon destructive analysis of individual samples and provide only discontinuous snapshots of biofilm establishment. In order to explore the development of biofilm over time and under various biotic and abiotic conditions, we applied a recently developed optical biofilm sensor to quasicontinuously analyze marine biofilm dynamics in situ. Using this technique in combination with microscope-assisted imaging, we investigated biofilm formation from its beginning to mature multispecies biofilms. In contrast to laboratory studies on biofilm formation, a smooth transition from initial attachment to colony formation and exponential growth could not be observed in the marine environment. Instead, initial attachment was followed by an adaptation phase of low growth and homogeneously distributed solitary bacterial cells. Moreover, we observed a diurnal variation of biofilm signal intensity, suggesting a transient state of biofilm formation of bacteria. Overall, the biofilm formation dynamics could be modeled by three consecutive development stages attributed to initial bacterial attachment, bacterial growth, and attachment and growth of unicellular eukaryotic microorganisms. Additional experiments showed that the presence of seaweed considerably shortened the adaptation phase in comparison with that on control surfaces but yielded similar growth rates. The outlined examples highlight the advantages of a quasicontinuous in situ detection that enabled, for the first time, the exploration of the initial attachment phase and the diurnal variation during biofilm formation in natural ecosystems.

摘要

分析生物膜形成的动态过程有助于加深我们对自然环境中表面定殖的理解。虽然实验室中筛选生物膜形成的方法已经很成熟,但迄今为止,海洋环境研究一直基于对单个样本的破坏性分析,只能提供生物膜形成的不连续快照。为了探索生物膜在不同生物和非生物条件下随时间的发展情况,我们应用了一种最近开发的光学生物膜传感器对海洋生物膜动态进行原位准连续分析。结合显微镜辅助成像技术,我们研究了从生物膜形成初期到成熟多物种生物膜的整个过程。与实验室中生物膜形成的研究不同,在海洋环境中未观察到从初始附着到菌落形成以及指数生长的平稳过渡。相反,初始附着之后是一个低生长且单个细菌细胞均匀分布的适应阶段。此外,我们观察到生物膜信号强度的昼夜变化,这表明细菌生物膜形成处于一种过渡状态。总体而言,生物膜形成动态可以通过三个连续的发展阶段来建模,分别归因于细菌的初始附着、细菌生长以及单细胞真核微生物的附着和生长。额外的实验表明,与对照表面相比,海藻的存在显著缩短了适应阶段,但生长速率相似。上述例子突出了准连续原位检测的优势,它首次使得在自然生态系统中探索生物膜形成过程中的初始附着阶段和昼夜变化成为可能。

相似文献

1
Fluorescence-based quasicontinuous and in situ monitoring of biofilm formation dynamics in natural marine environments.
Appl Environ Microbiol. 2014 Jun;80(12):3721-8. doi: 10.1128/AEM.00298-14. Epub 2014 Apr 11.
2
Design and field application of a UV-LED based optical fiber biofilm sensor.
Biosens Bioelectron. 2012 Mar 15;33(1):172-8. doi: 10.1016/j.bios.2011.12.048. Epub 2012 Jan 3.
3
Marine biofilms: diversity of communities and of chemical cues.
Environ Microbiol Rep. 2019 Jun;11(3):287-305. doi: 10.1111/1758-2229.12694. Epub 2018 Oct 15.
4
In situ modelling of biofilm formation in a hydrothermal spring cave.
Sci Rep. 2020 Dec 10;10(1):21733. doi: 10.1038/s41598-020-78759-4.
5
Microbial Surface Colonization and Biofilm Development in Marine Environments.
Microbiol Mol Biol Rev. 2015 Dec 23;80(1):91-138. doi: 10.1128/MMBR.00037-15. Print 2016 Mar.
6
Metagenomic Analysis of Zinc Surface-Associated Marine Biofilms.
Microb Ecol. 2019 Feb;77(2):406-416. doi: 10.1007/s00248-018-01313-3. Epub 2019 Jan 5.
8
Bacterial community structure of biofilms on artificial surfaces in an estuary.
Microb Ecol. 2007 Jan;53(1):153-62. doi: 10.1007/s00248-006-9154-5. Epub 2006 Dec 22.
9
Influence of Darkness and Aging on Marine and Freshwater Biofilm Microbial Communities Using Microcosm Experiments.
Microb Ecol. 2018 Aug;76(2):314-327. doi: 10.1007/s00248-018-1149-5. Epub 2018 Jan 29.
10
Bacterial colonization and biofilm development on minimally processed vegetables.
J Appl Microbiol. 1998 Dec;85 Suppl 1:45S-51S. doi: 10.1111/j.1365-2672.1998.tb05282.x.

引用本文的文献

3
Attachment and antibiotic response of early-stage biofilms studied using resonant hyperspectral imaging.
NPJ Biofilms Microbiomes. 2020 Nov 27;6(1):57. doi: 10.1038/s41522-020-00169-1.
4
Shear Stress as a Major Driver of Marine Biofilm Communities in the NW Mediterranean Sea.
Front Microbiol. 2019 Jul 31;10:1768. doi: 10.3389/fmicb.2019.01768. eCollection 2019.
5
Microbial Surface Colonization and Biofilm Development in Marine Environments.
Microbiol Mol Biol Rev. 2015 Dec 23;80(1):91-138. doi: 10.1128/MMBR.00037-15. Print 2016 Mar.
6
Optical Sensing of Microbial Life on Surfaces.
Appl Environ Microbiol. 2015 Dec 4;82(5):1362-1371. doi: 10.1128/AEM.03001-15.

本文引用的文献

1
Interactions between microbial biofilms and marine fouling algae: a mini review.
Biofouling. 2013;29(9):1097-113. doi: 10.1080/08927014.2013.828712. Epub 2013 Sep 18.
2
Compounds associated with algal surfaces mediate epiphytic colonization of the marine macroalga Fucus vesiculosus.
FEMS Microbiol Ecol. 2013 May;84(2):411-20. doi: 10.1111/1574-6941.12071. Epub 2013 Feb 5.
3
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
4
Dynamic approaches of mixed species biofilm formation using modern technologies.
Mar Environ Res. 2012 Jul;78:40-7. doi: 10.1016/j.marenvres.2012.04.001. Epub 2012 Apr 14.
5
Design and field application of a UV-LED based optical fiber biofilm sensor.
Biosens Bioelectron. 2012 Mar 15;33(1):172-8. doi: 10.1016/j.bios.2011.12.048. Epub 2012 Jan 3.
6
Epibacterial community patterns on marine macroalgae are host-specific but temporally variable.
Environ Microbiol. 2011 Mar;13(3):655-65. doi: 10.1111/j.1462-2920.2010.02371.x. Epub 2010 Nov 15.
7
Biofilm formation and the food industry, a focus on the bacterial outer surface.
J Appl Microbiol. 2010 Oct;109(4):1117-31. doi: 10.1111/j.1365-2672.2010.04756.x. Epub 2010 Aug 19.
10
The developmental model of microbial biofilms: ten years of a paradigm up for review.
Trends Microbiol. 2009 Feb;17(2):73-87. doi: 10.1016/j.tim.2008.11.001. Epub 2009 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验