Suppr超能文献

使用交联聚乙烯/聚氧化乙烯电解质抑制锂枝晶生长:实用锂金属聚合物电池的新方法。

Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries.

机构信息

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853, United States.

出版信息

J Am Chem Soc. 2014 May 21;136(20):7395-402. doi: 10.1021/ja502133j. Epub 2014 May 9.

Abstract

Solid polymer electrolyte (SPE) membranes are a critical component of high specific energy rechargeable Li-metal polymer (LMP) batteries. SPEs exhibit low volatility and thus increase the safety of Li-based batteries compared to current state-of-the-art Li-ion batteries that use flammable small-molecule electrolytes. However, most SPEs exhibit low ionic conductivity at room temperature, and often allow the growth of lithium dendrites that short-circuit the batteries. Both of these deficiencies are significant barriers to the commercialization of LMP batteries. Herein we report a cross-linked polyethylene/poly(ethylene oxide) SPE with both high ionic conductivity (>1.0 × 10(-4) S/cm at 25 °C) and excellent resistance to dendrite growth. It has been proposed that SPEs with shear moduli of the same order of magnitude as lithium could be used to suppress dendrite growth, leading to increased lifetime and safety for LMP batteries. In contrast to the theoretical predictions, the low-modulus (G' ≈ 1.0 × 10(5) Pa at 90 °C) cross-linked SPEs reported herein exhibit remarkable dendrite growth resistance. These results suggest that a high-modulus SPE is not a requirement for the control of dendrite proliferation.

摘要

固体聚合物电解质(SPE)膜是高比能可再充电锂金属聚合物(LMP)电池的关键组成部分。与目前使用易燃小分子电解质的最先进的锂离子电池相比,SPE 挥发性低,从而提高了锂基电池的安全性。然而,大多数 SPE 在室温下表现出低离子电导率,并且通常允许锂枝晶生长,从而使电池短路。这两个缺陷都是 LMP 电池商业化的重大障碍。本文报道了一种交联聚乙烯/聚(氧化乙烯)SPE,具有高离子电导率(>1.0×10(-4) S/cm 在 25°C 时)和优异的抗枝晶生长能力。有人提出,与锂的剪切模量具有相同数量级的 SPE 可用于抑制枝晶生长,从而提高 LMP 电池的寿命和安全性。与理论预测相反,本文报道的低模量(G'≈1.0×10(5) Pa 在 90°C 时)交联 SPE 表现出出色的抗枝晶生长能力。这些结果表明,高模量 SPE 不是控制枝晶增殖的必要条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验