Suppr超能文献

用于黄斑光学相干断层扫描分割的多目标几何可变形模型

Multiple-object geometric deformable model for segmentation of macular OCT.

作者信息

Carass Aaron, Lang Andrew, Hauser Matthew, Calabresi Peter A, Ying Howard S, Prince Jerry L

机构信息

Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.

Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.

出版信息

Biomed Opt Express. 2014 Mar 4;5(4):1062-74. doi: 10.1364/BOE.5.001062. eCollection 2014 Apr 1.

Abstract

Optical coherence tomography (OCT) is the de facto standard imaging modality for ophthalmological assessment of retinal eye disease, and is of increasing importance in the study of neurological disorders. Quantification of the thicknesses of various retinal layers within the macular cube provides unique diagnostic insights for many diseases, but the capability for automatic segmentation and quantification remains quite limited. While manual segmentation has been used for many scientific studies, it is extremely time consuming and is subject to intra- and inter-rater variation. This paper presents a new computational domain, referred to as flat space, and a segmentation method for specific retinal layers in the macular cube using a recently developed deformable model approach for multiple objects. The framework maintains object relationships and topology while preventing overlaps and gaps. The algorithm segments eight retinal layers over the whole macular cube, where each boundary is defined with subvoxel precision. Evaluation of the method on single-eye OCT scans from 37 subjects, each with manual ground truth, shows improvement over a state-of-the-art method.

摘要

光学相干断层扫描(OCT)是用于视网膜眼部疾病眼科评估的实际标准成像方式,并且在神经疾病研究中越来越重要。黄斑立方体内各视网膜层厚度的量化为许多疾病提供了独特的诊断见解,但自动分割和量化能力仍然相当有限。虽然手动分割已用于许多科学研究,但它极其耗时且存在评分者内和评分者间的差异。本文提出了一个新的计算域,称为平面空间,以及一种使用最近开发的多对象可变形模型方法对黄斑立方体内特定视网膜层进行分割的方法。该框架在防止重叠和间隙的同时维持对象关系和拓扑结构。该算法在整个黄斑立方体内分割八个视网膜层,其中每个边界都以亚体素精度定义。对来自37名受试者的单眼OCT扫描进行该方法的评估,每个受试者都有手动标注的真值,结果表明该方法优于一种先进方法。

相似文献

1
Multiple-object geometric deformable model for segmentation of macular OCT.
Biomed Opt Express. 2014 Mar 4;5(4):1062-74. doi: 10.1364/BOE.5.001062. eCollection 2014 Apr 1.
2
Layer boundary evolution method for macular OCT layer segmentation.
Biomed Opt Express. 2019 Feb 4;10(3):1064-1080. doi: 10.1364/BOE.10.001064. eCollection 2019 Mar 1.
3
Retinal layer segmentation of macular OCT images using boundary classification.
Biomed Opt Express. 2013 Jun 14;4(7):1133-52. doi: 10.1364/BOE.4.001133. Print 2013 Jul 1.
6
Multi-layer Fast Level Set Segmentation for Macular OCT.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1445-1448. doi: 10.1109/ISBI.2018.8363844. Epub 2018 May 24.
7
Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology.
Biomed Opt Express. 2014 Jan 7;5(2):348-65. doi: 10.1364/BOE.5.000348. eCollection 2014 Feb 1.
9
A Multiple Object Geometric Deformable Model for Image Segmentation.
Comput Vis Image Underst. 2013 Feb 1;117(2):145-157. doi: 10.1016/j.cviu.2012.10.006.

引用本文的文献

1
Retinal OCT Layer Segmentation via Joint Motion Correction and Graph-Assisted 3D Neural Network.
IEEE Access. 2023;11:103319-103332. doi: 10.1109/access.2023.3317011. Epub 2023 Sep 18.
2
Cost-efficient and glaucoma-specifical model by exploiting normal OCT images with knowledge transfer learning.
Biomed Opt Express. 2023 Nov 3;14(12):6151-6171. doi: 10.1364/BOE.500917. eCollection 2023 Dec 1.
3
Deep learning network with differentiable dynamic programming for retina OCT surface segmentation.
Biomed Opt Express. 2023 Jun 8;14(7):3190-3202. doi: 10.1364/BOE.492670. eCollection 2023 Jul 1.
4
JOINT MOTION CORRECTION AND 3D SEGMENTATION WITH GRAPH-ASSISTED NEURAL NETWORKS FOR RETINAL OCT.
Proc Int Conf Image Proc. 2022 Oct;2022:766-770. doi: 10.1109/icip46576.2022.9898072. Epub 2022 Oct 18.
5
Longitudinal deep network for consistent OCT layer segmentation.
Biomed Opt Express. 2023 Apr 3;14(5):1874-1893. doi: 10.1364/BOE.487518. eCollection 2023 May 1.
7
DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning.
Transl Vis Sci Technol. 2020 Dec 9;9(2):61. doi: 10.1167/tvst.9.2.61. eCollection 2020 Dec.
8
Structured layer surface segmentation for retina OCT using fully convolutional regression networks.
Med Image Anal. 2021 Feb;68:101856. doi: 10.1016/j.media.2020.101856. Epub 2020 Oct 14.
9
Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis.
Sci Rep. 2020 May 19;10(1):8242. doi: 10.1038/s41598-020-64803-w.
10
Fully Convolutional Boundary Regression for Retina OCT Segmentation.
Med Image Comput Comput Assist Interv. 2019 Oct;11764:120-128. doi: 10.1007/978-3-030-32239-7_14. Epub 2019 Oct 10.

本文引用的文献

1
An adaptive grid for graph-based segmentation in retinal OCT.
Proc SPIE Int Soc Opt Eng. 2014;9034. doi: 10.1117/12.2043040.
2
DEFORMABLE REGISTRATION OF MACULAR OCT USING A-MODE SCAN SIMILARITY.
Proc IEEE Int Symp Biomed Imaging. 2013 Dec 31;2013:476-479. doi: 10.1109/ISBI.2013.6556515.
3
Retinal layer segmentation of macular OCT images using boundary classification.
Biomed Opt Express. 2013 Jun 14;4(7):1133-52. doi: 10.1364/BOE.4.001133. Print 2013 Jul 1.
4
Segmentation of retinal OCT images using a random forest classifier.
Proc SPIE Int Soc Opt Eng. 2013 Mar 13;8669. doi: 10.1117/12.2006649.
5
A Multiple Object Geometric Deformable Model for Image Segmentation.
Comput Vis Image Underst. 2013 Feb 1;117(2):145-157. doi: 10.1016/j.cviu.2012.10.006.
6
Multi-object geodesic active contours (MOGAC).
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):404-12. doi: 10.1007/978-3-642-33418-4_50.
7
Optimal multiple surface segmentation with shape and context priors.
IEEE Trans Med Imaging. 2013 Feb;32(2):376-86. doi: 10.1109/TMI.2012.2227120. Epub 2012 Nov 15.
8
Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints.
IEEE Trans Med Imaging. 2013 Mar;32(3):531-43. doi: 10.1109/TMI.2012.2225152. Epub 2012 Oct 18.
10
Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma.
Ophthalmology. 2012 Jan;119(1):3-9. doi: 10.1016/j.ophtha.2011.07.012. Epub 2011 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验