Mayr Johannes A, Feichtinger René G, Tort Frederic, Ribes Antonia, Sperl Wolfgang
Department of Paediatrics, Paracelsus Medical University Salzburg, Salzburg, 5020, Austria,
J Inherit Metab Dis. 2014 Jul;37(4):553-63. doi: 10.1007/s10545-014-9705-8. Epub 2014 Apr 29.
Lipoate is a covalently bound cofactor essential for five redox reactions in humans: in four 2-oxoacid dehydrogenases and the glycine cleavage system (GCS). Two enzymes are from the energy metabolism, α-ketoglutarate dehydrogenase and pyruvate dehydrogenase; and three are from the amino acid metabolism, branched-chain ketoacid dehydrogenase, 2-oxoadipate dehydrogenase, and the GCS. All these enzymes consist of multiple subunits and share a similar architecture. Lipoate synthesis in mitochondria involves mitochondrial fatty acid synthesis up to octanoyl-acyl-carrier protein; and three lipoate-specific steps, including octanoic acid transfer to glycine cleavage H protein by lipoyl(octanoyl) transferase 2 (putative) (LIPT2), lipoate synthesis by lipoic acid synthetase (LIAS), and lipoate transfer by lipoyltransferase 1 (LIPT1), which is necessary to lipoylate the E2 subunits of the 2-oxoacid dehydrogenases. The reduced form dihydrolipoate is reactivated by dihydrolipoyl dehydrogenase (DLD). Mutations in LIAS have been identified that result in a variant form of nonketotic hyperglycinemia with early-onset convulsions combined with a defect in mitochondrial energy metabolism with encephalopathy and cardiomyopathy. LIPT1 deficiency spares the GCS, and resulted in a combined 2-oxoacid dehydrogenase deficiency and early death in one patient and in a less severely affected individual with a Leigh-like phenotype. As LIAS is an iron-sulphur-cluster-dependent enzyme, a number of recently identified defects in mitochondrial iron-sulphur cluster synthesis, including NFU1, BOLA3, IBA57, GLRX5 presented with deficiency of LIAS and a LIAS-like phenotype. As in DLD deficiency, a broader clinical spectrum can be anticipated for lipoate synthesis defects depending on which of the affected enzymes is most rate limiting.
硫辛酸是一种共价结合的辅因子,对人体的五个氧化还原反应至关重要:存在于四种2-氧代酸脱氢酶和甘氨酸裂解系统(GCS)中。其中两种酶来自能量代谢,即α-酮戊二酸脱氢酶和丙酮酸脱氢酶;另外三种来自氨基酸代谢,即支链酮酸脱氢酶、2-氧代己二酸脱氢酶和GCS。所有这些酶都由多个亚基组成,并且具有相似的结构。线粒体中的硫辛酸合成涉及线粒体脂肪酸合成直至辛酰基-酰基载体蛋白;以及三个特定于硫辛酸的步骤,包括由硫辛酰(辛酰)转移酶2(推测)(LIPT2)将辛酸转移至甘氨酸裂解H蛋白、由硫辛酸合成酶(LIAS)合成硫辛酸以及由硫辛酰转移酶1(LIPT1)进行硫辛酸转移,这对于2-氧代酸脱氢酶的E2亚基进行硫辛酰化是必需的。还原形式的二氢硫辛酸由二氢硫辛酰胺脱氢酶(DLD)重新激活。已鉴定出LIAS中的突变,这些突变导致一种非酮症高甘氨酸血症的变异形式,伴有早发性惊厥,并伴有线粒体能量代谢缺陷,出现脑病和心肌病。LIPT1缺乏症不影响GCS,并导致一名患者出现2-氧代酸脱氢酶联合缺乏症并早亡,以及一名患有类似Leigh综合征表型的患者症状较轻。由于LIAS是一种依赖铁硫簇的酶,最近在包括NFU1、BOLA3、IBA57、GLRX5在内的线粒体铁硫簇合成中发现的一些缺陷表现出LIAS缺乏和类似LIAS的表型。与DLD缺乏症一样,根据受影响最严重的酶中哪一种是最限速的,硫辛酸合成缺陷可能会出现更广泛的临床谱。