Suppr超能文献

胰岛素样生长因子结合蛋白-4 控制脂肪组织对高脂肪饮食的扩张能力。

Control of adipose tissue expandability in response to high fat diet by the insulin-like growth factor-binding protein-4.

机构信息

From the Program in Molecular Medicine.

Department of Medicine, and Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605.

出版信息

J Biol Chem. 2014 Jun 27;289(26):18327-38. doi: 10.1074/jbc.M113.545798. Epub 2014 Apr 28.

Abstract

Adipose tissue expansion requires growth and proliferation of adipocytes and the concomitant expansion of their stromovascular network. We have used an ex vivo angiogenesis assay to study the mechanisms involved in adipose tissue expansion. In this assay, adipose tissue fragments placed under pro-angiogenic conditions form sprouts composed of endothelial, perivascular, and other proliferative cells. We find that sprouting was directly stimulated by insulin and was enhanced by prior treatment of mice with the insulin sensitizer rosiglitazone. Moreover, basal and insulin-stimulated sprouting increased progressively over 30 weeks of high fat diet feeding, correlating with tissue expansion during this period. cDNA microarrays analyzed to identify genes correlating with insulin-stimulated sprouting surprisingly revealed only four positively correlating (Fads3, Tmsb10, Depdc6, and Rasl12) and four negatively correlating (Asph, IGFbp4, Ppm1b, and Adcyap1r1) genes. Among the proteins encoded by these genes, IGFbp4, which suppresses IGF-1 signaling, has been previously implicated in angiogenesis, suggesting a role for IGF-1 in adipose tissue expandability. Indeed, IGF-1 potently stimulated sprouting, and the presence of activated IGF-1 receptors in the vasculature was revealed by immunostaining. Recombinant IGFbp4 blocked the effects of insulin and IGF-1 on mouse adipose tissue sprouting and also suppressed sprouting from human subcutaneous adipose tissue. These results reveal an important role of IGF-1/IGFbp4 signaling in post-developmental adipose tissue expansion.

摘要

脂肪组织的扩张需要脂肪细胞的生长和增殖,以及伴随而来的基质血管网络的扩张。我们使用了一种体外血管生成测定法来研究脂肪组织扩张中涉及的机制。在这个测定中,放置在促血管生成条件下的脂肪组织片段形成由内皮细胞、血管周细胞和其他增殖细胞组成的芽。我们发现,胰岛素直接刺激芽的形成,并通过先前用胰岛素增敏剂罗格列酮处理小鼠来增强这种作用。此外,基础和胰岛素刺激的发芽在高脂肪饮食喂养的 30 周内逐渐增加,与这段时间内的组织扩张相关。为了鉴定与胰岛素刺激的发芽相关的基因,我们进行了 cDNA 微阵列分析,令人惊讶的是,只发现了四个正相关(Fads3、Tmsb10、Depdc6 和 Rasl12)和四个负相关(Asph、IGFbp4、Ppm1b 和 Adcyap1r1)的基因。在这些基因编码的蛋白质中,先前曾被认为与血管生成有关的 IGFbp4 抑制 IGF-1 信号,表明 IGF-1 在脂肪组织可扩展性中发挥作用。事实上,IGF-1 强烈刺激发芽,并且血管中的激活 IGF-1 受体通过免疫染色显示出来。重组 IGFbp4 阻断了胰岛素和 IGF-1 对小鼠脂肪组织发芽的作用,也抑制了人皮下脂肪组织的发芽。这些结果揭示了 IGF-1/IGFbp4 信号在发育后脂肪组织扩张中的重要作用。

相似文献

1
Control of adipose tissue expandability in response to high fat diet by the insulin-like growth factor-binding protein-4.
J Biol Chem. 2014 Jun 27;289(26):18327-38. doi: 10.1074/jbc.M113.545798. Epub 2014 Apr 28.
2
IGFBP4 Is Required for Adipogenesis and Influences the Distribution of Adipose Depots.
Endocrinology. 2017 Oct 1;158(10):3488-3500. doi: 10.1210/en.2017-00248.
3
IGF-binding proteins 3 and 4 are regulators of sprouting angiogenesis.
Mol Biol Rep. 2020 Apr;47(4):2561-2572. doi: 10.1007/s11033-020-05339-0. Epub 2020 Mar 4.
6
The production and regulation of IGF and IGFBPs in human adipose tissue cultures.
Growth Horm IGF Res. 2012 Dec;22(6):200-5. doi: 10.1016/j.ghir.2012.09.004. Epub 2012 Oct 16.
7
Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production.
Am J Physiol Endocrinol Metab. 2008 Nov;295(5):E1056-64. doi: 10.1152/ajpendo.90345.2008. Epub 2008 Aug 26.

引用本文的文献

1
Lipids associated with autophagy: mechanisms and therapeutic targets.
Cell Death Discov. 2024 Oct 30;10(1):460. doi: 10.1038/s41420-024-02224-8.
2
Distinct subpopulations of human subcutaneous adipose tissue precursor cells revealed by single-cell RNA sequencing.
Am J Physiol Cell Physiol. 2024 Apr 1;326(4):C1248-C1261. doi: 10.1152/ajpcell.00726.2023. Epub 2024 Mar 4.
3
Wnt signaling preserves progenitor cell multipotency during adipose tissue development.
Nat Metab. 2023 Jun;5(6):1014-1028. doi: 10.1038/s42255-023-00813-y. Epub 2023 Jun 19.
4
Molecular Genetics of Abnormal Redox Homeostasis in Type 2 Diabetes Mellitus.
Int J Mol Sci. 2023 Mar 1;24(5):4738. doi: 10.3390/ijms24054738.
6
Hypoxia as a Double-Edged Sword to Combat Obesity and Comorbidities.
Cells. 2022 Nov 23;11(23):3735. doi: 10.3390/cells11233735.
7
Cancer cell-derived exosomal miR-425-3p induces white adipocyte atrophy.
Adipocyte. 2022 Dec;11(1):487-500. doi: 10.1080/21623945.2022.2108558.
8
The Role of Type 2 Diabetes in Pancreatic Cancer.
Cureus. 2022 Jun 24;14(6):e26288. doi: 10.7759/cureus.26288. eCollection 2022 Jun.
9
Angiogenesis in adipose tissue and obesity.
Angiogenesis. 2022 Nov;25(4):439-453. doi: 10.1007/s10456-022-09848-3. Epub 2022 Jul 20.
10
Unique role for lncRNA HOTAIR in defining depot-specific gene expression patterns in human adipose-derived stem cells.
Genes Dev. 2022 May 1;36(9-10):566-581. doi: 10.1101/gad.349393.122. Epub 2022 May 26.

本文引用的文献

1
Adipose tissue angiogenesis assay.
Methods Enzymol. 2014;537:75-91. doi: 10.1016/B978-0-12-411619-1.00005-7.
3
Metabolic actions of insulin-like growth factor-I in normal physiology and diabetes.
Endocrinol Metab Clin North Am. 2012 Jun;41(2):425-43, vii-viii. doi: 10.1016/j.ecl.2012.04.017.
5
Dichotomous effects of VEGF-A on adipose tissue dysfunction.
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5874-9. doi: 10.1073/pnas.1200447109. Epub 2012 Mar 26.
8
A microarray analysis of the hypoxia-induced modulation of gene expression in human adipocytes.
Arch Physiol Biochem. 2012 Jul;118(3):112-20. doi: 10.3109/13813455.2012.654611. Epub 2012 Feb 21.
9
The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells.
Cell Metab. 2012 Feb 8;15(2):222-9. doi: 10.1016/j.cmet.2012.01.008.
10
The spatiotemporal development of adipose tissue.
Development. 2011 Nov;138(22):5027-37. doi: 10.1242/dev.067686.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验